
www.it-ebooks.info

http://www.it-ebooks.info/

Ansible Playbook Essentials

Design automation blueprints using Ansible's playbooks
to orchestrate and manage your multitier infrastructure

Gourav Shah

BIRMINGHAM - MUMBAI

www.it-ebooks.info

http://www.it-ebooks.info/

Ansible Playbook Essentials

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2015

Production reference: 1290715

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78439-829-3

www.packtpub.com

www.it-ebooks.info

www.packtpub.com
http://www.it-ebooks.info/

Credits

Author
Gourav Shah

Reviewers
Ajey Gore

Olivier Korver

Ben Mildren

Aditya Patawari

Acquisition Editor
Vinay Argekar

Content Development Editor
Amey Varangaonkar

Technical Editor
Abhishek R. Kotian

Copy Editors
Pranjali Chury

Neha Vyas

Project Coordinator
Suzanne Coutinho

Proofreader
Safis Editing

Indexer
Monica Ajmera Mehta

Graphics
Jason Monteiro

Production Coordinator
Nilesh R. Mohite

Cover Work
Nilesh R. Mohite

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author

Gourav Shah (www.gouravshah.com) has extensive experience in building and
managing highly available, automated, fault-tolerant infrastructure and scaling it.
He started his career as a passionate Linux and open source enthusiast, transformed
himself into an operations engineer, and evolved to be a cloud and DevOps expert
and trainer.

In his previous avatar, Gourav headed IT operations for Efficient Frontier
(now Adobe), India. He founded Initcron Systems (www.initcron.com), a niche
consulting firm that specializes in DevOps enablement and cloud infrastructure
management. Under the Initcron banner, he helps companies design DevOps
strategies and helps implement them. Initcron also provides automation services for
start-ups, as well as large enterprises.

Gourav is a coveted corporate trainer and has trained professionals from top
IT companies around the world, such as IBM, CISCO, Qualcomm, Accenture,
Dreamworks, Walmart Labs, Intuit, and Wells Fargo, to name a few. He runs a
specialized training school by the name School of Devops (www.schoolofdevops.com)
to groom world class cloud and DevOps professionals.

www.it-ebooks.info

www.gouravshah.com
www.initcron.com
www.schoolofdevops.com
http://www.it-ebooks.info/

Acknowledgments

My journey to becoming a DevOps expert, a trainer, an entrepreneur, and with this
book, an author, is full of interesting stories, people, and experiences. The seeds
for my professional expertise were sown during my engineering days, when I was
introduced to the open, friendly, and limitless world of free software by evangelists
such as Trevor Warren, Dinesh Shah, and Dr. Nagarjuna G, with support and
encouragement of a few seniors, especially Gurpreet Singh. I took Linux as a passion
and quickly became the point man for any queries on computer networks and Linux.

I feel extremely fortunate to have converted my passion into a profession. My long stint
at Efficient Frontier (now Adobe) has been the cornerstone of my technical foundation.
It was an ocean of knowledge with great minds at work. I am honored to have worked
alongside and learn from experts, namely Harold Barker, Alex Eulenberg, David Gould,
and Anand Ranganathan, from whom I learned various aspects of IT Operational
practices. I would like to thank Vikram Vijayaraghavan, Harold Sasaki, and Mohan
Gopalakrishanan, who truly empowered me and showed me how to lead. I would also
like to thank Ashok and Dennis for being great teammates.

I am deeply indebted to Michael DeHaan, the creator of the Ansible project, and
the community members who have contributed toward developing, implementing,
documenting, and evangelizing such a fantastic product, that is, Ansible. Without
their efforts, this book would have been impossible.

I would like to thank the editing, publishing, and reviewing teams, especially Amey
Varangaonkar, Abhishek Kotian, and Vinay Argekar, with whom I have been
interacting, and the numerous other contributors working behind the scenes. Thank
you for being extremely patient and flexible, accommodating my busy schedules,
bringing me back on track, and helping me through the process toward the completion
of this book. The job of reviewers is not easy. I especially thank Oliver, Ajey,
Aditya, and Ben for thoroughly reviewing my work and coming up with invaluable
suggestions that contributed toward improving the quality of this book significantly.

www.it-ebooks.info

http://www.it-ebooks.info/

Most importantly, I would like to mention my family, which includes my parents,
Rajul and Jawahar; my wife, Khushboo; my sister, Swarada; and my brother-in-law,
Mayuresh, who have stood by me through thick and thin and love me unconditionally.
I must thank Khushboo, my loving wife, who has supported me in all my ventures.

I dedicate this book to my father, Dr. Jawahar Shah, the most positive person I have
ever met in my life, who bravely fought the battle against a formidable foe, ALS, and
survived. You are my hero, Pappa!

www.it-ebooks.info

http://www.it-ebooks.info/

About the Reviewers

Ajey Gore has more than 18 years of work experience in core technology strategy,
research and development, and consulting. He has advised others on as well as built
better business technologies for various clients across the globe while serving as the
head of technology for ThoughtWorks, India.

He founded CodeIgnition (http://codeignition.co), a boutique DevOps and
infrastructure automation firm in 2013, where he serves as the chief executive officer
and principal technology consultant. Since 2013, the company has grown to 30
people. This company serves start-ups and helps them grow their business without
worrying about infrastructure or scaling issues.

He is passionate about infrastructure automation, continuous delivery, the DevOps
culture and tools, cloud infrastructure orchestration, virtualization strategies and
hybrid cloud implementations, and networks and security. He speaks at various
conferences and meetups and writes about different subjects on his website at
http://ajeygore.in.

Since 2010, Ajey has helped to run RubyConf India, DevOpsDays India, and
RailsGirls India. He is part of the Emerging Technologies Trust, a nonprofit
organization responsible for running conferences, and is also committed to
promoting technology in India.

Olivier Korver has been a Linux Sysadmin for over 5 years and has a passion
for automation. His motto is that any repetitive task can and should be automated.
Therefore, not only does he code his own middleware and OS stack in Ansible
or Puppet, but he also assists developers in greatly improving their workflow by
showing them how it takes very little time to set up Ansible, Docker, and Puppet
and also learn the tools provided by them.

www.it-ebooks.info

http://codeignition.co
http://ajeygore.in
http://www.it-ebooks.info/

Aditya Patawari is a systems engineer by profession and just loves to play around
with Linux and other open source technologies. He works on various parts of system
life cycles and handles infrastructure automation and the scaling of applications. He
is also a contributor to the Fedora project and can be heard talking about it along
with Linux systems automation at several conferences and events. He has worked
on Ansible both as part of the Fedora project and at BrowserStack, where he leads a
team of systems engineers.

I would like to thank my family for being patient with me. I would
also like to thank my colleagues at BrowserStack for their support
and my fellow contributors at the Fedora project, who taught me so
much. Lastly, a big thanks to all my friends for being there for me
when I just could not manage it all.

www.it-ebooks.info

http://www.it-ebooks.info/

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.it-ebooks.info

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[i]

Table of Contents
Preface	 v
Setting Up the Learning Environment	 1
Chapter 1: Blueprinting Your Infrastructure	 9

Getting introduced to Ansible	 9
Plays	 11

YAML – the playbook language	 12
Our first playbook	 12

Creating a host inventory	 14
Patterns	 15
Tasks	 16

Modules	 17
Running the playbook	 18

Review questions	 20
Summary	 20

Chapter 2: Going Modular with Ansible Roles	 21
Understanding roles	 21
Naming roles	 22
The directory layout for roles	 22
Creating a site-wide playbook, nesting, and using include statements	 24
Creating the www playbook	 26

The default and custom role paths	 27
Parameterizing the roles	 27

Creating a base role	 27
Refactoring our code – creating a base role	 28

Creating an Nginx role	 29
Adding role dependencies	 30
Managing files for Nginx	 30

Automating events and actions with handlers	 32

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[ii]

Adding pre-tasks and post-tasks to playbooks	 34
Running playbooks with roles	 34
Review questions	 36
Summary	 36

Chapter 3: Separating Code and Data – Variables, Facts,
and Templates	 37

Static content explosion	 38
Separating code and data	 38
Jinja2 templates	 40

The template formation	 40
Facts and variables	 41

Automatic variables – facts	 41
User-defined variables	 43

Where to define a variable	 43
How to define a variable	 43

Templating the Nginx configurations	 44
Adding another layer – the MySQL role	 48

Creating the scaffolding for the roles with Ansible-Galaxy	 48
Adding metadata to the role	 49
Using variables in tasks and handlers	 50

Creating variables	 51
Creating tasks	 52

Using variables in playbooks	 55
Applying a MySQL role to the DB servers	 57

Variable precedence	 58
The best practices for variable usage	 61
Review questions	 62
Summary	 63

Chapter 4: Bringing In Your Code – Custom Commands
and Scripts	 65

The command modules	 66
Using the raw module	 66
Using the command module	 67
Using the shell module	 67
Using the script module	 68

Deploying a WordPress application – a hands-on approach	 69
Installing WordPress	 70

Controlling the idempotence of command modules	 71
The registered variables	 72
Extracting WordPress with a shell module	 72

Configuring WordPress	 73

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[iii]

Review questions	 75
Summary	 76

Chapter 5: Controlling Execution Flow – Conditionals	 77
The conditional control structure	 78

The when statements	 78
Fact-based selection	 79

Refactoring the MySQL role	 80
Multilevel variable dictionaries	 80

Merging hashes	 81
Configuring the MySQL server selectively	 82

Conditional control structure in Jinja2 templates	 83
Updating the MySQL template	 84

Running a task only once	 85
Executing roles conditionally	 85
Review questions	 85
Summary	 86

Chapter 6: Iterative Control Structures – Loops	 87
The omnipotent with statement	 87
Configuring WordPress requisites	 88
The PHP5-FPM role	 89

Defining an array	 89
Looping an array	 90

Creating MySQL databases and user accounts	 91
Creating a hash	 92

Nested hashes	 92
Iterating a hash	 93

Creating Nginx virtual hosts	 94
Defining the PHP site information	 94

Review questions	 98
Summary	 98

Chapter 7: Node Discovery and Clustering	 99
Node discovery with magic variables	 100
Creating the load balancer role	 100
Accessing facts for non-playbook hosts	 105

Facts caching with Redis	 106
Caching facts in files	 107

Review questions	 108
Summary	 108

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[iv]

Chapter 8: Encrypting Data with Vault	 109
Ansible-vault	 109

Advanced Encryption Standard	 110
What to encrypt with the vault? 	 110

Using the Ansible-vault	 111
Encrypting the data	 111
Updating the encrypted data	 112
Rotating the encryption keys	 113

Encrypting the database credentials	 113
Using a password file	 115
Adding the vault password file option to the Ansible configuration	 116

Using encrypted data in templates	 116
Adding SSL support to Nginx	 117

Review questions	 119
Summary	 120

Chapter 9: Managing Environments	 121
Approaches for managing environments	 123

The inventory groups and variables	 123
Approach 1 – using nested groups in an inventory	 124
Approach 2 – using environment-specific inventory variables	 125

Creating a development environment	 127
Review questions	 129
Summary	 129

Chapter 10: Orchestrating Infrastructure with Ansible	 131
Ansible as an orchestrator	 132

Multiple playbooks and ordering	 132
Pre-tasks and post-tasks	 132
Delegation	 133
Rolling updates	 133
Tests	 133
Tags	 134
Patterns and limits	 135

Tagging the roles	 136
Creating an orchestration playbook for WordPress	 138
Review questions	 139
Summary	 140

References	 141
Index	 143

www.it-ebooks.info

http://www.it-ebooks.info/

[v]

Preface
With the evolution of cloud computing, agile development methodologies, and
explosion of data in recent years, there is a growing need to manage infrastructure at
scale. DevOps tools and practices have become a necessity to automate every stage
of such a scalable, dynamic, and complex infrastructure. Configuration management
tools are at the core of this devops tool set.

Ansible is a simple, efficient, fast configuration management, orchestration and
application deployment tool all combined into one. This book helps you to get
familiar with writing Playbooks, Ansible's automation language. This book follows a
hands-on approach to show you how to create flexible, dynamic, reusable, and data-
driven roles. It then takes you through the advanced features of Ansible, such as node
discovery, clustering, securing data with vault, and managing environments, and
finally shows you how to use Ansible to orchestrate multitier infrastructure stack.

What this book covers
Chapter 1, Blueprinting Your Infrastructure, will introduced you to Playbooks, YAML,
and so on. You will also learn about the components of a playbook.

Chapter 2, Going Modular with Ansible Roles, will demonstrate creating modular
reusable automation code using Ansible roles, which are units of automation.

Chapter 3, Separating Code and Data – Variables, Facts, and Templates, covers the creation
of flexible, customizable, data-driven roles with templates and variables. You will
also learn about auto-discovered variables, that is, facts.

Chapter 4, Bringing In Your Code – Custom Commands and Scripts, covers bringing in
your existing scripts and invoking Shell commands with Ansible.

Chapter 5, Controlling Execution Flow – Conditionals, discusses the control structures
offered by Ansible to change the direction of execution.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[vi]

Chapter 6, Iterative Control Structures – Loops, demonstrates how to iterate over arrays,
hashes, and so on, using omnipotent with statements.

Chapter 7, Node Discovery and Clustering, discusses the discovery of topology information
and creates dynamic configurations using magic variables and facts caching.

Chapter 8, Encrypting Data with Vault, discusses secure variables stored in, and shared
with, version control systems using Ansible-vault.

Chapter 9, Managing Environments, covers the creation and management of isolated
environments with Ansible and mapping automation code to the software
development workflow.

Chapter 10, Orchestrating Infrastructure with Ansible, covers the orchestration features
of Ansible, such as rolling updates, pre-tasks and post-tasks, tags, building tests into
the playbook, and so on.

What you need for this book
This book assumes that you have a working installation of Ansible and a good
knowledge of Linux/Unix environments and systems operations, and that you are
familiar working with the command-line interface.

Who this book is for
The target audience for this book are systems or automation engineers with a few
years of experience in managing various parts of infrastructure, including operating
systems, application configurations, and deployments. This book also targets anyone
who intends to manage systems and application configurations effectively and in an
automated way, with the shortest learning curve.

It is assumed that readers have a conceptual understanding of Ansible, have already
installed it and are familiar with basic operations such as creating inventory file and
running ad hoc commands with Ansible.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "We can include other contexts through the
use of the include directive."

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[vii]

A block of code is set as follows:

site.yml : This is a sitewide playbook
- include: www.yml

Any command-line input or output is written as follows:

$ ansible-playbook simple_playbook.yml -i customhosts

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "The
resultant variable hash should contain items from defaults plus the overridden
values from vars".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

www.it-ebooks.info

www.packtpub.com/authors
http://www.it-ebooks.info/

Preface

[viii]

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save
other readers from frustration and help us improve subsequent versions of this book.
If you find any errata, please report them by visiting http://www.packtpub.com/
submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

www.it-ebooks.info

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support
http://www.it-ebooks.info/

[1]

Setting Up the
Learning Environment

To use this book most effectively and to examine, run, and write code that is part of
exercises supplied in this book, it's essential to set up a learning environment. Even
though Ansible can work with any type of nodes, virtual machines, cloud servers,
or bare metal hosts with an operating system installed and SSH service running, the
preferred mode is to use virtual machines.

In this session, we will cover the following topics:

•	 Understanding the learning environment
•	 Understanding the pre requisites
•	 Installing and configuring virtualbox and vagrant
•	 Creating virtual machines
•	 Installing Ansible
•	 Using the sample code

Understanding the learning environment
We assume that most of our learners would like to set up the environment locally,
and thus recommend using the open source and freely available software VirtualBox
and Vagrant, which have support for most of the desktop operating systems,
including Windows, OSX, and Linux.

www.it-ebooks.info

http://www.it-ebooks.info/

Setting Up the Learning Environment

[2]

The ideal setup includes five virtual machines, the purpose of which is explained as
follows. You can also consolidate some of the services, for example, the load balancer
and web server can be the same host:

•	 Controller: This is the only host that needs to have Ansible installed,
and works as a controller. This is used to launch the ansible-playbook
commands from the controller.

•	 Database (Ubuntu): This host is configured with Ansible to run the MySQL
database service and runs the Ubuntu distribution of Linux.

•	 Database (CentOS): This host is configured with Ansible to run the
MySQL database service, however, it runs the CentOS distribution of Linux.
This is added to test multiplatform support while writing the MySQL role
for Ansible.

•	 Web Server: This host is configured with Ansible to run the Apache web
server application.

•	 Load balancer: This host gets configured with the haproxy application,
which is an open source HTTP proxy service. This host acts as a load
balancer, which accepts HTTP requests and spreads the load across
available web servers.

Prerequisites
For most up-to-date instructions on prerequisites, software and hardware
requirements, as well as setup instructions, refer to the following GitHub repository:

https://github.com/schoolofdevops/ansible-playbook-essentials.

Systems prerequisites
A moderately configured desktop or a laptop system should be sufficient to set up
the learning environment. The following are the recommended prerequisites in the
context of of software and hardware:

Processor 2 cores
Memory 2.5 GB RAM available
Disk Space 20 GB of free space
Operating System Windows, OS X (Mac), Linux

www.it-ebooks.info

https://github.com/schoolofdevops/ansible-playbook-essentials
http://www.it-ebooks.info/

Setting Up the Learning Environment

[3]

The base software
For the purpose of setting up the learning environment, we recommend using the
following software:

•	 VirtualBox: Oracle's virtualbox is a desktop virtualization software, which
is freely available. It works on a variety of operating systems, including
Windows, OS X, Linux, FreeBSD, Solaris, and so on. It provides a layer of
hypervisor and allows one to create and run virtual machines on top of an
existing base OS. The code provided along with this book has been tested
on 4.3x versions of virtualbox. However, any version of virtualbox, which is
compatible with the vagrant version can be used.

•	 Vagrant: This is a tool that allows one to easily create and share virtual
environments on most hypervisors and cloud platforms, including but not
limited to virtualbox. It can automate tasks such as importing an image,
specifying resources, such as memory and CPUs assigned to VMs, and
setting up network interfaces, hostnames, user credentials, and so on. Since
it provides a text configuration in the form of a Vagrant file, virtual machines
can be provisioned programmatically, making them easy to use it with other
tools such as Jenkins to automate build and test pipelines.

•	 Git for Windows: Even though we do not intend to use Git, which is a version
control software, we use this software to install the SSH utility on the Windows
system. Vagrant needs an SSH binary available in the path. Windows is not
packaged with the SSH utility, and Git for Windows is the easiest way to
install it on Windows. Alternative options such as Cygwin exist.

The following table lists the version OS the software used to develop the code
provided with the book, with download links:

Software Version Download URI
VirtualBox 4.3.30 https://www.virtualbox.org/wiki/Downloads

Vagrant 1.7.3 https://www.vagrantup.com/downloads.html

Git for Windows 1.9.5 https://git-scm.com/download/win

Learners are advised to download, install, and refer to the respective documentation
pages to get familiar with these tools before proceeding.

www.it-ebooks.info

https://www.virtualbox.org/wiki/Downloads
https://www.vagrantup.com/downloads.html
https://git-scm.com/download/win
http://www.it-ebooks.info/

Setting Up the Learning Environment

[4]

Creating virtual machines
Once you have installed the base software, you can use vagrant to bring up
the virtual machines required. Vagrant uses a specification file by the name
Vagrantfile, a sample of which is as follows:

-*- mode: ruby -*-
vi: set ft=ruby :
Sample Vagranfile to setup Learning Environment
for Ansible Playbook Essentials

VAGRANTFILE_API_VERSION = "2"
Vagrant.configure(VAGRANTFILE_API_VERSION) do |config|
 config.vm.box = "ansible-ubuntu-1204-i386"
 config.vm.box_url = "https://cloud-
 images.ubuntu.com/vagrant/precise/current/precise-server-
 cloudimg-i386-vagrant-disk1.box"
 config.vm.define "control" do |control|
 control.vm.network :private_network, ip: "192.168.61.10"
 end
 config.vm.define "db" do |db|
 db.vm.network :private_network, ip: "192.168.61.11"
 end
 config.vm.define "dbel" do |db|
 db.vm.network :private_network, ip: "192.168.61.14"
 db.vm.box = "opscode_centos-6.5-i386"
 db.vm.box = "http://opscode-vm-
 bento.s3.amazonaws.com/vagrant/virtualbox/opscode_centos-
 6.5_chef-provisionerless.box"
 end
 config.vm.define "www" do |www|
 www.vm.network :private_network, ip: "192.168.61.12"
 end
 config.vm.define "lb" do |lb|
 lb.vm.network :private_network, ip: "192.168.61.13"
 end
end

The preceding Vagrant file contains specifications to set up five virtual machines, as
described in the beginning of this chapter, which are, control, db, dbel, www, and lb.

www.it-ebooks.info

http://www.it-ebooks.info/

Setting Up the Learning Environment

[5]

Learners are advised to use following instructions to create and start the virtual
machines required to set up the learning environment:

1. Create a directory structure for the learning environment setup, for example,
learn/ansible, anywhere on the system.

2. Copy the Vagrantfile file provided previously to the learn/ansible
directory. The tree should now look as follows:

learn
_ ansible

_ Vagrantfile

The Vagrantfile file contains specifications for the
virtual machines described in the earlier section.

3. Open a terminal and go to learn/ansible.
4. Bring up the control node and log in to it, as follows:

$ vagrant up control

$ vagrant ssh control

5. From a separate terminal window, from the learn/ansible directory, bring
up the remaining virtual machine, one at a time, as follows:
$ vagrant up db

$ vagrant up www

$ vagrant up lb

optionally (for centos based mysql configurations)

$ vagrant up dbel

Optionally, to login to to the virtual machines as

$ vagrant ssh db

$ vagrant ssh www

$ vagrant ssh lb

optionally (for centos based mysql configurations)

$ vagrant ssh dbel

www.it-ebooks.info

http://www.it-ebooks.info/

Setting Up the Learning Environment

[6]

Installing Ansible on the controller
Once the virtual machines are created and brought up, Ansible needs to be installed
on the controller. Since Ansible is agentless and manages nodes using SSH transport,
no additional setup is needed on the nodes except for ensuring that the SSH service
is running. To install Ansible on the controller, refer to the following steps. These
instructions are specific to the Ubuntu distribution of Linux, as that's what we use on
our controller. For generic installation instructions, please refer to the following page:

http://docs.ansible.com/intro_installation.html.

The steps are as follows:

1.	 Log in to the controller using the following command:
from inside learn/ansible directory

$ vagrant ssh control

2.	 Update the repository cache using the following command:
$ sudo apt-get update

3.	 Install the prerequisite software and repositories:
On Ubuntu 14.04 and above

$ sudo apt-get install -y software-properties-common

$ sudo apt-get install -y python-software-properties

$ sudo apt-add-repository ppa:ansible/ansible

4.	 Update the repository cache after adding a new repository, such as follows:
$ sudo apt-get update

5.	 Install Ansible using the following command:
$ sudo apt-get install -y ansible

6.	 Validate Ansible using the following command:
$ ansible --version

[sample output]

vagrant@vagrant:~$ ansible --version

ansible 1.9.2

 configured module search path = None

www.it-ebooks.info

http://docs.ansible.com/intro_installation.html
http://www.it-ebooks.info/

Setting Up the Learning Environment

[7]

Using sample code
The sample code provided with this book is divided as per the chapter numbers. A
directory named after the chapter number contains the snapshot of the state of the
code at the end of the respective chapter. Learners are advised to independently
create their own code and use the sample code as a reference. Moreover, if the
readers skip one or more chapters, they can use the sample code from the previous
chapter as a base.

For example, while using Chapter 6, Iterative Control Structures – Loops, you can use
the sample code from Chapter 5, Controlling Execution Flow – Conditionals, as a base.

Downloading the example code
You can download the example code files for all
Packt books you have purchased from your account
at http://www.packtpub.com. If you purchased
this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the
files e-mailed directly to you.

www.it-ebooks.info

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[9]

Blueprinting Your
Infrastructure

This book is a primer for anyone who has conceptual knowledge of Ansible
and would like to get started writing Ansible playbooks to automate common
infrastructure tasks, orchestrate application deployments, and/or manage
configurations across multiple environments. This book follows an incremental
approach, starting with the basics such as learning about the anatomy of a playbook
and writing simple roles to create modular code. Once comfortable with the basics,
you will be introduced to primitives such as adding dynamic data with variables
and templates, and controlling execution flow with conditionals and iterators.
This is then followed by more advanced topics such as node discovery, clustering,
encrypting data, and managing environments. We conclude with the discussion
on the orchestration features of Ansible. Let's begin our journey towards being an
Ansible practitioner by learning about playbooks.

In this chapter, we will learn about:

•	 The anatomy of a playbook
•	 What plays are and how to write a Hosts inventory and search patterns
•	 Ansible modules and the batteries-included approach

Getting introduced to Ansible
Ansible is a simple, flexible, and extremely powerful tool that gives you the ability to
automate common infrastructure tasks, run ad hoc commands, and deploy multitier
applications spanning multiple machines. Even though you can use Ansible to
launch commands on a number of hosts in parallel, the real power lies in managing
those using playbooks.

www.it-ebooks.info

http://www.it-ebooks.info/

Blueprinting Your Infrastructure

[10]

As systems engineer, infrastructure that we typically need to automate contains
complex multitier applications. Each of which represents a class of servers, for
example, load balancers, web servers, database servers, caching applications,
and middleware queues. Since many of these applications have to work in tandem
to provide a service, there is topology involved as well. For example, a load
balancer would connect to web servers, which in turn read/write to a database and
connect to the caching server to fetch in-memory objects. Most of the time, when we
launch such application stacks, we need to configure these components in a very
specific order.

Here is an example of a very common three-tier web application running a load
balancer, a web server, and a database backend:

LB

www wwwwww

DB DB

Ansible lets you translate this diagram into a blueprint, which defines your
infrastructure policies. The format used to specify such policies is what
playbooks are.

Example policies and the sequence in which those are to be applied is shown in the
following steps:

1.	 Install, configure, and start the MySQL service on the database servers.
2.	 Install and configure the web servers that run Nginx with PHP bindings.
3.	 Deploy a Wordpress application on the web servers and add respective

configurations to Nginx.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[11]

4.	 Start the Nginx service on all web servers after deploying Wordpress.
Finally, install, configure, and start the haproxy service on the load balancer
hosts. Update haproxy configurations with the hostnames of all the web
servers created earlier.

The following is a sample playbook that translates the infrastructure blueprint into
policies enforceable by Ansible:

Plays
A playbook consists of one or more plays, which map groups of hosts to well-defined
tasks. The preceding example contains three plays, each to configure one layer in the
multitiered web application. Plays also define the order in which tasks are configured.
This allows us to orchestrate multitier deployments. For example, configure the load
balancers only after starting the web servers, or perform two-phase deployment
where the first phase only adds this configurations and the second phase starts the
services in the desired order.

www.it-ebooks.info

http://www.it-ebooks.info/

Blueprinting Your Infrastructure

[12]

YAML – the playbook language
As you may have already noticed, the playbook that we wrote previously resembles
more of a text configuration than a code snippet. This is because the creators of
Ansible chose to use a simple, human-readable, and familiar YAML format to
blueprint the infrastructure. This adds to Ansible's appeal, as users of this tool need
not learn any special programming language to get started with. Ansible code is
self-explanatory and self-documenting in nature. A quick crash course on YAML
should suffice to understand the basic syntax. Here is what you need to know about
YAML to get started with your first playbook:

•	 The first line of a playbook should begin with "--- " (three hyphens) which
indicates the beginning of the YAML document.

•	 Lists in YAML are represented with a hyphen followed by a white space.
A playbook contains a list of plays; they are represented with "- ". Each play
is an associative array, a dictionary, or a map in terms of key-value pairs.

•	 Indentations are important. All members of a list should be at the same
indentation level.

•	 Each play can contain key-value pairs separated by ":" to denote hosts,
variables, roles, tasks, and so on.

Our first playbook
Equipped with the basic rules explained previously and assuming readers have done
a quick dive into YAML fundamentals, we will now begin writing our first playbook.
Our problem statement includes the following:

1.	 Create a devops user on all hosts. This user should be part of the
devops group.

2.	 Install the "htop" utility. Htop is an improved version of top—an interactive
system process monitor.

3.	 Add the Nginx repository to the web servers and start it as a service.

Now, we will create our first playbook and save it as simple_playbook.yml
containing the following code:

- hosts: all
 remote_user: vagrant
 sudo: yes
 tasks:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[13]

 - group:
 name: devops
 state: present
 - name: create devops user with admin privileges

 user:
 name: devops
 comment: "Devops User"
 uid: 2001
 group: devops
 - name: install htop package
 action: apt name=htop state=present update_cache=yes

- hosts: www
 user: vagrant
 sudo: yes
 tasks:
 - name: add official nginx repository
 apt_repository:
 repo: 'deb http://nginx.org/packages/ubuntu/ lucid nginx'
 - name: install nginx web server and ensure its at the latest
 version
 apt:
 name: nginx
 state: latest
 - name: start nginx service
 service:
 name: nginx
 state: started

Our playbook contains two plays. Each play consists of the following two
important parts:

•	 What to configure: We need to configure a host or group of hosts to run the
play against. Also, we need to include useful connection information, such as
which user to connect as, whether to use sudo command, and so on.

•	 What to run: This includes the specification of tasks to be run, including
which system components to modify and which state they should be in, for
example, installed, started, or latest. This could be represented with tasks and
later on, by roles.

Let's now look at each of these briefly.

www.it-ebooks.info

http://www.it-ebooks.info/

Blueprinting Your Infrastructure

[14]

Creating a host inventory
Before we even start writing our playbook with Ansible, we need to define an
inventory of all hosts that need to be configured, and make it available for Ansible
to use. Later, we will start running plays against a selection of hosts from this
inventory. If you have an existing inventory, such as cobbler, LDAP, a CMDB
software, or wish to pull it from a cloud provider, such as ec2, it can be pulled from
Ansible using the concept of a dynamic inventory.

For text-based local inventory, the default location is /etc/ansible/hosts. For our
learning environment, however, we will create a custom inventory file customhosts
in our working directory, the contents of which are shown as follows. You are free to
create your own inventory file:

#customhosts
#inventory configs for my cluster
[db]
192.168.61.11 ansible_ssh_user=vagrant

[www]
www-01.example.com ansible_ssh_user=ubuntu
www-02 ansible_ssh_user=ubuntu

[lb]
lb0.example.com

Now, when our playbook maps a play to the group, the www (hosts: www), hosts
in that group will be configured. The all keywords will match to all hosts from
the inventory.

The following are the guidelines to for creating inventory files:

• Inventory files follow INI style configurations, which essentially include
configuration blocks that start with host group/class names included in
"[]". This allows the selective execution on classes of systems, for
example, [namenodes].

• A single host can be part of multiple groups. In such cases, host variables
from both the groups will get merged, and the precedence rules apply.
We will discuss variables and precedence in detail later.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[15]

•	 Each group contains a list of hosts and connection details, such as the SSH
user to connect as, the SSH port number if non-default, SSH credentials/
keys, sudo credentials, and so on. Hostnames can also contain globs, ranges,
and more, to make it easy to include multiple hosts of the same type, which
follow some naming patterns.

After creating an inventory of the hosts, it's a good idea
to validate connectivity using Ansible's ping module
(for example, ansible -m ping all).

Patterns
In the preceding playbook, the following lines decide which hosts to select to run
a specific play:

- hosts: all
- hosts: www

The first code will match all hosts, and the second code will match hosts which are
part of the www group.

Patterns can be any of the following or their combinations:

Pattern Types Examples
Group name namenodes

Match all all or *
Range namenode[0:100]

Hostnames/hostname globs *.example.com, host01.example.com
Exclusions namenodes:!secondaynamenodes

Intersection namenodes:&zookeeper

Regular expressions ~(nn|zk).*\.example\.org

www.it-ebooks.info

http://www.it-ebooks.info/

Blueprinting Your Infrastructure

[16]

Tasks
Plays map hosts to tasks. Tasks are a sequence of actions performed against a group
of hosts that match the pattern specified in a play. Each play typically contains
multiple tasks that are run serially on each machine that matches the pattern.
For example, take a look at the following code snippet:

- group:

 name:devops

 state: present

- name: create devops user with admin privileges

 user:

 name: devops

 comment: "Devops User"

 uid: 2001

 group: devops

In the preceding example, we have two tasks. The first one is to create a group, and
second is to create a user and add it to the group created earlier. If you notice, there
is an additional line in the second task, which starts with name:. While writing tasks,
it's good to provide a name with a human-readable description of what this task is
going to achieve. If not, the action string will be printed instead.

Each action in a task list can be declared by specifying the following:

•	 The name of the module
•	 Optionally, the state of the system component being managed
•	 The optional parameters

With newer versions of Ansible (0.8 onwards), writing an action
keyword is now optional. We can directly provide the name of the
module instead. So, both of these lines will have a similar action,
that is,. installing a package with the apt module:
action: apt name=htop state=present update_cache=yes

apt: name=nginx state=latest

Ansible stands out from other configuration management tools, with its
batteries-included included approach. These batteries are "modules."
It's important to understand what modules are before we proceed.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[17]

Modules
Modules are the encapsulated procedures that are responsible for managing specific
system components on specific platforms.

Consider the following example:

•	 The apt module for Debian and the yum module for RedHat helps manage
system packages

•	 The user module is responsible for adding, removing, or modifying users
on the system

•	 The service module will start/stop system services

Modules abstract the actual implementation from users. They expose a declarative
syntax that accepts a list of the parameters and states of the system components
being managed. All this can be declared using the human-readable YAML syntax,
using key-value pairs.

In terms of functionality, modules resemble providers for those of you who are
familiar with Chef/Puppet software. Instead of writing procedures to create a user,
with Ansible we declare which state our component should be in, that is, which user
to create, its state, and its characteristics, such as UID, group, shell, and so on. The
actual procedures are inherently known to Ansible via modules, and are executed in
the background.

The Command and Shell modules are special ones. They
neither take key-value pairs as parameters, nor are idempotent.

Ansible comes preinstalled with a library of modules, which ranges from the
ones which manage basic system resources to more sophisticated ones that send
notifications, perform cloud integrations, and so on. If you want to provision an ec2
instance, create a database on the remote PostgreSQL server, and get notifications on
IRC, then Ansible has a module for it. Isn't this amazing?

No need to worry about finding an external plugin, or struggle to integrate with cloud
providers, and so on. To find a list of modules available, you can refer to the Ansible
documentation at http://docs.ansible.com/list_of_all_modules.html.

Ansible is extendible too. If you do not find a module that does the job for you, it's
easy to write one, and it doesn't have to be in Python. A module can be written for
Ansible in the language of your choice. This is discussed in detail at
http://docs.ansible.com/developing_modules.html.

www.it-ebooks.info

http://docs.ansible.com/list_of_all_modules.html
http://docs.ansible.com/developing_modules.html
http://www.it-ebooks.info/

Blueprinting Your Infrastructure

[18]

The modules and idempotence
Idempotence is an important characteristic of a module. It is something which can be
applied on your system multiple times, and will return deterministic results. It has
built-in intelligence. For instance, we have a task that uses the apt module to install
Nginx and ensure that it's up to date. Here is what happens if you run it multiple times:

•	 Every time idempotance is run multiple times, the apt module will compare
what has been declared in the playbook versus the current state of that
package on the system. The first time it runs, Ansible will determine that
Nginx is not installed, and will go ahead with the installation.

•	 For every consequent run, it will skip the installation part, unless there is
a new version of the package available in the upstream repositories.

This allows executing the same task multiple times without resulting in the error
state. Most of the Ansible modules are idempotent, except for the command and
shell modules. Users will have to make these modules idempotent.

Running the playbook
Ansible comes with the ansible-playbook command to launch a playbook with.
Let's now run the plays we created:

$ ansible-playbook simple_playbook.yml -i customhosts

Here is what happens when you run the preceding command:

•	 The ansible-playbook parameter is the command that takes the playbook
as an argument (simple_playbook.yml) and runs the plays against the hosts

•	 The simple_playbook parameter contains the two plays that we created: one
for common tasks, and the other for installing Nginx

•	 The customhosts parameter is our host's inventory, which lets Ansible know
which hosts, or groups of hosts, to call plays against

Launching the preceding command will start calling plays, orchestrating in
the sequence that we described in the playbook. Here is the output of the
preceding command:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[19]

Let's now analyze what happened:

•	 Ansible reads the playbooks specified as an argument to the
ansible-playbook command and starts executing plays in the
serial order.

•	 The first play that we declared, runs against the "all" hosts. The all keyword is
a special pattern that will match all hosts (similar to *). So, the tasks in the first
play will be executed on all hosts in the inventory we passed as an argument.

•	 Before running any of the tasks, Ansible will gather information about the
systems that it is going to configure. This information is collected in the
form of facts.

•	 The first play includes the creation of the devops group and user, and
installation of the htop package. Since we have three hosts in our inventory,
we see one line per host being printed, which indicates whether there was a
change in the state of the entity being managed. If the state was not changed,
"ok" will be printed.

www.it-ebooks.info

http://www.it-ebooks.info/

Blueprinting Your Infrastructure

[20]

•	 Ansible then moves to the next play. This is executed only on one host, as we
have specifed "hosts:www" in our play, and our inventory contains a single
host in the group "www".

•	 During the second play, the Nginx repository is added, the package is
installed, and the service is started.

•	 Finally, Ansible prints the summary of the playbook run in the "PLAY RECAP"
section. It indicates how many modifications were made, if any of the hosts
were unreachable, or execution failed on any of the systems.

What if a host is unresponsive, or fails to run tasks? Ansible
has built-in intelligence, which will identify such issues
and take the failed host out of rotation. It will not affect the
execution on other hosts.

Review questions
Do you think you've understood the chapter well enough? Try answering the
following questions to test your understanding:

1.	 What is idempotence when it comes to modules?
2.	 What is the host's inventory and why is it required?
3.	 Playbooks map ___ to ___ (fill in the blanks)
4.	 What types of patterns can you use while selecting a list of hosts to

run plays against?
5.	 Where is the actual procedure to execute an action on a specific platform

defined?
6.	 Why is it said that Ansible comes with batteries included?

Summary
In this chapter, you learned about what Ansible playbooks are, what components
those are made up of, and how to blueprint your infrastructure with it. We also did a
primer on YAML—the language used to create plays. You learned about how plays
map tasks to hosts, how to create a host inventory, how to filter hosts with patterns,
and how to use modules to perform actions on our systems. We then created a
simple playbook as a proof of concept.

In the upcoming chapter, we will start refactoring our code to create reusable and
modular chunks of code, and call them roles.

www.it-ebooks.info

http://www.it-ebooks.info/

[21]

Going Modular with
Ansible Roles

In the last chapter, you learned about writing a simple playbook with Ansible. You
also learned about the concepts of plays which map hosts to tasks. Writing tasks in a
single playbook may work fine for a very simple setup. However, if we have multiple
applications spanning across number of hosts, this will quickly become unmanageable.

In this chapter, you will be introduced to the following concepts:

•	 What makes a role and what are roles used for?
•	 How to create roles to provide abstraction?
•	 Organizing content to provide modularity
•	 Using include statements
•	 Writing simple tasks and handlers
•	 Installing packages, managing services, and serving files with

Ansible modules

Understanding roles
In real-life scenarios, we will mostly be configuring web servers, database servers,
load balancers, middleware queues, and so on. If you take one step back and look at
the big picture, you will realize that you are configuring groups of identical servers
in a repeatable fashion.

To manage such infrastructures in the most efficient way, we need some abstraction
which allows us to define what we need to configure in each of these groups, and
call them by name. That's exactly what roles do. Ansible roles allow us to configure
groups of nodes at the same time, without repeating ourselves. Roles also provide a
way to create modular code, which then can then be shared and reused.

www.it-ebooks.info

http://www.it-ebooks.info/

Going Modular with Ansible Roles

[22]

Naming roles
A common practice is to create roles that map to each application or component of
your infrastructure that you would like to configure. For example:

•	 Nginx
•	 MySQL
•	 MongoDB
•	 Tomcat

The directory layout for roles
Roles are nothing but directories laid out in a specific manner. Roles follow
predefined directory layout conventions and expect each component to be in the
path meant for it.

The following is an example of a role, called Nginx:

Let's now look at the rules of the game and what each of the components in the
preceding diagram is for:

•	 Each role contains a directory which is named after itself, for example, Nginx,
with roles/ as its parent directory. Each named role directory contains
one or more optional subdirectories. The most common subdirectories to
be present are tasks, templates, and handlers. Each of these subdirectories
typically contain the main.yml file, which is a default file.

•	 Tasks contain the core logic, for example, they will have code specifications
to install packages, start services, manage files, and so on. If we consider a
role to be a movie, a task would be the protagonist.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[23]

•	 Tasks alone cannot do everything. Considering our analogy with movies, it's
incomplete without the supporting cast. Protagonists have friends, cars, lovers,
and antagonists to complete the story. Similarly, tasks consume data, call for
static or dynamic files, trigger actions, and so on. That's where files, handlers,
templates, defaults, and vars come in. Let's look at what these are for.

•	 Vars and defaults provide data about your application/role, for example,
which port your server should run on, the path for storing the application
data, which user to run the service as, and so on. Default variables were
introduced in version 1.3 and these allow us to provide sane defaults. These
can later be overridden from other places, for example, vars, group_vars,
and host_vars. Variables are merged and precedence rules apply. This
gives us a lot of flexibility to configure our servers selectively. For example,
running the web server on port 80 on all hosts except for the ones in the
staging environment, which should run it on port 8080.

•	 Files and templates subdirectories provide options for managing files.
Typically, the files subdirectory is used to copy over static files to destination
hosts, for example, some application installers archive static text files, and
so on. In addition to static files, frequently you may need to manage files
that are are generated on the fly. For example, a configuration file that
has parameters such as port, user, and memory, which can be provided
dynamically using variables. Generating such files requires a special type of
primitive, called templates.

•	 Tasks can trigger actions based on the change of a state or a condition.
In a movie, the protagonist may chase the antagonist and take revenge
based on the provocation or an event. An example event is kidnapping the
protagonist's lady love. Similarly, you may need to perform an action on
your hosts, for example, restarting a service based on what happened earlier,
which could be a change in the state of a configuration file. This trigger-action
relationship can be specified using a handler.

Continuing our analogy, many popular movies have sequels and sometimes even
prequels. In such cases, one should watch it in a particular order, as the storyline of a
sequel depends on something that happened in the previous movie. Similarly, a role
can have a dependency on another role. A very common example is, before installing
Tomcat, Java should be present on the system. These dependencies are defined in the
meta subdirectory of a role.

Let's get hands-on with this by creating a role for the Nginx application. Let's take a
problem statement, try to solve it, and learn about roles in the process.

Consider the following scenario. With the onset of the soccer world cup, we need to
create a web server to serve up a page on sports news.

www.it-ebooks.info

http://www.it-ebooks.info/

Going Modular with Ansible Roles

[24]

Being a follower of agile methodologies, we will do this in phases. In the first phase,
we will just install a web server and serve up a home page. Let's now break this
down into the steps we need to take to achieve this:

1.	 Install a web server. In this case, we will use 'Nginx' as it is a lightweight
web server.

2.	 Manage configuration for the Nginx web server.
3.	 Start the web server after installing it.
4.	 Copy over an HTML file, which will be served as a home page.

Now that we have identified what steps to take, we also need to map them to the
respective module types we will use to achieve each of these:

•	 Installing Nginx = Package module (apt)
•	 Configuring Nginx = File module (file)
•	 Starting Nginx = Systems module (service)
•	 Serve Webpage = Files module (file)

Before we start writing code, we will start creating a layout to organize our files.

Creating a site-wide playbook, nesting,
and using include statements
As a best practice, we will create a top-level file, which will contain the blueprint of
our complete infrastructure. Technically, we can include everything that we need to
configure inside just one file. However, that would have two problems:

•	 It would quickly get out of control as we start adding tasks, variables, and
handlers to this single file. It would be a nightmare to maintain such code.

•	 It would also be difficult to reuse and share such code. One of the advantages
of using a tool such as Ansible is its ability to separate data from code. Data
is organization-specific, and code is generic. This generic code can then be
shared with others. However, if you write everything in a single file, it would
be impossible to do so.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[25]

To avoid this problem, we will start organizing our code in a modular fashion,
as follows:

•	 We will create roles for each of the applications that we need to configure.
In this case, it is Nginx

•	 Our web server may need to install more than one application in addition to
Nginx, for example, PHP and OpenSSL. To encapsulate all of these, we will
create a playbook named www.yml.

•	 The preceding playbook that we created will map hosts with the Nginx role.
We may add more roles to it later.

•	 We will add this playbook to the top-level playbook, that is, site.yml

The following diagram depicts the preceding steps in a very simple manner:

www.yml

www.yml

db.yml

hosts : www

roles : base, nginx

role layout

nginx

- tasks

- handlers

- files

site.yml

Here is our site.yml file:

site.yml : This is a sitewide playbook
- include: www.yml

The preceding include directive assists us with modularizing the code. Instead of
writing it all in one file, we split the logic and import what is required. In this case,
we will include another playbook, which is called a nested playbook.

www.it-ebooks.info

http://www.it-ebooks.info/

Going Modular with Ansible Roles

[26]

The following are some guidelines on what can be included and how:

•	 The include directive can be used to include tasks, handlers, and even
other playbooks

•	 If you include a playbook inside another like we did in the site.yml file,
you cannot substitute the variables

•	 The include keyword can be used in combination with regular
task/handler specifications

•	 It's possible to pass parameters with include statements. This is called as
parameterized include

Roles and auto-includes
Roles have implicit rules to auto include files. So long as you
follow the directory layout conventions, you are assured that
all your tasks, handlers, and the rest of the files are included
automatically. Hence, it's important to create the subdirectories
with the exact names as specified by Ansible.

Creating the www playbook
We created a site-wide playbook and used an include statement to call another
playbook by the name www.yml. We will now create this file with one play, which
maps our web server hosts to the Nginx role:

#www.yml : playbook for web servers
- hosts: www
 remote_user: vagrant
 sudo: yes
 roles:
 - nginx

The above code works as follows:

•	 Run this code on any host that maps to the [www] group specified in the
hosts file.

•	 For each directory inside the roles/nginx/* file, include roles/nginx/*/
main.yml to the play. This includes tasks, handlers, vars, meta, default,
and so on. This is where the auto include rules apply.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[27]

The default and custom role paths
By default, Ansible looks inside the roles/ subdirectory of the project that we create
playbooks for. Being top-class devops engineers, we will follow the best practice to
have a centralized, version-controlled repository to store all your roles. We may also
end up reusing the roles created by community. Once we do this, we can reuse these
roles across multiple projects. In such cases, we will check out the code at one or
more locations, for example:

•	 /deploy/ansible/roles

•	 /deploy/ansible/community/roles

For nondefault paths, we will need to add the roles_path parameter to
ansible.cfg as shown in the following command:

roles_path = /deploy/ansible/roles:/deploy/ansible/community/roles

Parameterizing the roles
At times, we may need to override default parameters specified inside vars or the
default directory of a role, for example, running web servers on port 8080 instead
of 80. In such cases, we can also pass parameters to roles in the preceding playbook,
as follows:

#www.yml : playbook for web servers
- hosts: www
 roles:
- { role: nginx, port: 8080 }

Creating a base role
In the previous chapter, we created a simple playbook with all plays written inside
the same file. After discovering new and exciting information about roles, we will
start refactoring our code and making it modular.

www.it-ebooks.info

http://www.it-ebooks.info/

Going Modular with Ansible Roles

[28]

Refactoring our code – creating a base role
We have written two plays in the simple_playbook.yml file. We intended to run the
first play on all hosts. This play has tasks to create users, install essential packages,
and
so on:

It's a good practice to combine all such essential tasks and create a base role. You can
name it as base, common, essential, or whatever you please, but the concept remains
the same. We will now move this code to the base role:

1.	 Create the directory layout for the base role. Since we are only going to
specify tasks, we just need one subdirectory inside the base:
$ mkdir -p roles/base/tasks

2.	 Create the main.yml file inside roles/base/tasks to specify tasks for the
base role.

3.	 Edit the main.yml file and add the following code:

essential tasks. should run on all nodes
 - name: creating devops group
 group: name=devops state=present
 - name: create devops user
 user: name=devops comment="Devops User" uid=2001 group=devops
 - name: install htop package
 action: apt name=htop state=present update_cache=yes

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[29]

Creating an Nginx role
We will now create a separate role for Nginx and move the previous code that we
wrote in the simple_playbook.yml file to it, as follows:

1.	 Create the directory layout for the Nginx role:
$ mkdir roles/nginx

$ cd roles/nginx

$ mkdir tasks meta files

$ cd tasks

2.	 Create the install.yml file inside roles/base. Move the Nginx-related
tasks to it. It should look like this:

 - name: add official nginx repository
 apt_repository: repo='deb
 http://nginx.org/packages/ubuntu/ lucid nginx'
 - name: install nginx web server and ensure its at the
 latest version
 apt: name=nginx state=latest force=yes

3.	 We will also create the service.yml file to manage the state of the
Nginx daemon:

 - name: start nginx service
 service: name=nginx state=started

4.	 We looked at the include directive earlier. We will use it to include both the
install.yml and service.yml files in the main.yml file, as follows:

This is main tasks file for nginx role
 - include: install.yml
- include: service.yml

Best Practice
Why are we creating multiple files to hold the code that installs
packages and manages services, separately? That's because
well-factored roles allow you to selectively enable specific features.
For example, at times, you may want to deploy services in
multiple phases. In the first phase, you may just want to install and
configure applications, and start services only in the second phase
of your deployment. In such cases, having modular tasks can help.
You can always include them all in the main.yml file.

www.it-ebooks.info

http://www.it-ebooks.info/

Going Modular with Ansible Roles

[30]

Adding role dependencies
We have some essential tasks specified in the base role. We may keep on adding
more tasks which are a prerequisite for the applications that follow. In such cases, we
would like our Nginx role to be dependent on the base role. We will now specify this
dependency inside the meta subdirectory. Let's take a look at the following steps:

1.	 Create the main.yml file inside the roles/nginx/meta/main.yml path.
2.	 Add the following code to the main.yml file inside the meta directory:

dependencies:
 - {role: base}

The preceding specification will ensure that the base role is always applied before
any task in Nginx starts running.

Managing files for Nginx
As per our solution to the scenario, we already have Ansible tasks to install Nginx
and to start the service. We still don't have a web page to serve yet, and we did not
think about the Nginx site configurations. We don't expect Nginx to magically know
about how and where to serve the web page from, do we?

We need to perform the following steps to serve the HTML page:

1.	 Create a site configuration that lets Nginx know which port to listen to for
requests, and what to do when a request comes.

2.	 Create some HTML content, which will be served when an HTTP request
comes in.

3.	 Add code to tasks/main.yml to copy over these files.

You might have noticed, both steps 1 and 2 require that you create and manage
some files on the host, which will run the Nginx web server. You also learned
about the file and the subdirectory of a role. You guessed it right. We will use this
subdirectory to host our files and have them copied over to all the Nginx hosts with
Ansible. So, let's create these files now using the following command:

$ cd roles/nginx/files

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[31]

Create a default.configuration file to manage the default Nginx
site configurations. This file should contain parameters such as port,
server name, and web root configurations, as follows:

#filename: roles/nginx/files/default.conf
server {
 listen 80;
 server_name localhost;
 location / {
 root /usr/share/nginx/html;
 index index.html;
 }
}

We will also create an index.html file, which we will push to all web servers:

#filename: roles/nginx/files/indx.html
<html>
 <body>
 <h1>Ole Ole Ole </h1>
 <p> Welcome to FIFA World Cup News Portal</p>
 </body>
</html>

Now that we have created these files, we will add tasks to copy these over and put
them in roles/nginx/tasks/configure.yml, as follows:

 - name: create default site configurations
 copy: src=default.conf dest=/etc/nginx/conf.d/default.conf
 mode=0644
 - name: create home page for default site
 copy: src=index.html dest=/usr/share/nginx/html/index.html

We will also update the main.yaml file inside tasks to include the newly created file,
and add it before the service.yml file:

This is the main tasks file for the nginx role
 - include: install.yml
 - include: configure.yml
 - include: service.yml

www.it-ebooks.info

http://www.it-ebooks.info/

Going Modular with Ansible Roles

[32]

Automating events and actions with
handlers
Let's assume that we are managing Nginx manually, and that we have to change the
port that Nginx listens to from the default site to 8080. What would we do to make
this happen? Sure, we would edit the default.conf file and change the port from
80 to 8080. However, would that be enough? Would that make Nginx listen to port
8080 immediately after editing this file? The answer is no. There is one more step
involved. Let's take a look at the following screenshot:

config update
notify

event handler

restart service

When we change a configuration file, we will typically also restart/reload the service
so that it reads our modifications and applies those.

So far, so good. Now let's come back to our Ansible code. We are going to run this
code in an automated fashion on a large number of servers, possibly hundreds.
Considering this, it's not feasible for us to log in to each system to restart services after
every change. This defeats the purpose of automating the process. Now, how do we
ask Ansible to take action when an event occurs? That's where handlers can help.

You learned that Ansible modules are idempotent. They will enforce a change in
state only if there is a configuration drift. When managing with Ansible, we will
commit the preceding port change in the default.conf file inside roles/nginx/
files. If we launch an Ansible run after making this change then, while executing,
it will compare the file inside our role with the one on the system, detect the
configuration drift, and copy it over to the changed file. With Ansible, this is where
we will add a notification that will trigger a handler to run. In this case, we will call a
handler to restart the Nginx service.

Let's now add this handler to roles/nginx/handlers/main.yml:

- name: restart nginx service
 service: name=nginx state=restarted

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[33]

Handlers are similar to regular tasks. They specify a module's name, instance, and
state. Why do we not add them with regular tasks then? Well, we only need to
execute handlers,when an event occurs, not every time we run, ansible. And that's
the exact reason why we create a separate section for it.

Now that we have written the handler, we also need to add a trigger for it. We will
do this by adding the notify directive to roles/tasks/nginx/configure.yml,
as follows:

Even when multiple tasks notify the handler, it will be called
only once, toward the end. This will avoid multiple restarts of
the same service unnecessarily.

By now, our Nginx role layout looks more complete and has files, handlers, tasks,
and directories with individual tasks to manage each phase of the Nginx setup. The
role layout is as follows:

www.it-ebooks.info

http://www.it-ebooks.info/

Going Modular with Ansible Roles

[34]

Adding pre-tasks and post-tasks to
playbooks
We would like to print status messages before and after we begin applying
Nginx. Let's add it to our www.yml playbook with the pre_tasks and
post_tasks parameters:

- hosts: www

 remote_user: vagrant

 sudo: yes

 pre_tasks:

 - shell: echo 'I":" Beginning to configure web server..'

 roles:

 - nginx

 post_tasks:

 - shell: echo 'I":" Done configuring nginx web server...'

In the preceding example, we only printed some messages using the echo command.
However, we can create tasks using any of the modules available with Ansible,
which can run before, or after, applying roles.

Running playbooks with roles
Let's now apply the refactored code to our hosts. We are going to launch only the
site-wide playbook, that is, the site.yml file and then rely on the include statements
and roles to do the magic:

$ ansible-playbook -i customhosts site.yml

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[35]

Let's take a look at the following screenshot:

In addition to the output we saw last time, there are some new messages this time.
Let's analyze those:

•	 Before and after, roles are applied, pre-tasks and post-tasks get triggered;
this prints messages using the shell module.

•	 We now have the code to copy to the config and .html file for our Nginx
web server.

•	 We also see that the handler triggers an Nginx service restart. This is due to
the change in the state for the configuration file, which triggers the handler.

www.it-ebooks.info

http://www.it-ebooks.info/

Going Modular with Ansible Roles

[36]

Did you notice that tasks in the base role also get triggered, even
when we have not mentioned the base role in the www playbook?
This is where meta information is useful. Remember we had
specified a dependency on the base role inside meta/main.yml
for Nginx? That's what did the trick.
Dependencies:

 - { role: base}

Review questions
Do you think you've understood the chapter well enough? Try answering the
following questions to test your understanding:

1.	 Roles contain ___ and ___ subdirectories to specify variables/parameters.
2.	 How do you specify a dependency on another role?
3.	 When we add roles to a play, why is it not required that we use the include

directives? How do the tasks, handlers, and so on, get added to the play
automatically?

4.	 Why do we have a separate section for handlers if they resemble
regular tasks?

5.	 Which module can be used to copy over static files to destination hosts?
6.	 How do you specify the tasks to be run before applying a role in a playbook?

Summary
In this chapter, you learned how to use roles to provide abstraction and to help
modularizing code for reuse. That's exactly what you see community doing. Creating
roles, and sharing them with you. You also learned about include directives, directory
layout for roles, and adding role dependencies. We then went on to refactor our code
and created a base role, the Nginx role. We also looked at how to manage events and
take actions using handlers.

In the next chapter, we will extend the concepts of roles and start adding dynamic
data with variables and templates.

www.it-ebooks.info

http://www.it-ebooks.info/

[37]

Separating Code and
Data – Variables, Facts,

and Templates
In the previous chapter, we looked at how to write a role to provide modularity and
abstraction. While doing so, we created the configuration file and copied the file over
to the destination host using Ansible's copy module.

In this chapter, we will cover the following concepts:

•	 How do you separate data from code?
•	 What are Jinja2 templates? How are these created?
•	 What are variables? How and where are they used?
•	 What are system facts? How are they discovered?
•	 What are the different types of variables?
•	 What is a variable merge order? What are its precedence rules?

www.it-ebooks.info

http://www.it-ebooks.info/

Separating Code and Data – Variables, Facts, and Templates

[38]

Static content explosion
Let's imagine that we are managing a cluster of hundreds of web servers spanning
across multiple data centers. Since we have the server_name parameter hardcoded
in to the config file, we will have to create one file per server. This also means that
we will manage hundreds of static files, which will quickly get out of control. Our
infrastructure is dynamic, and managing change is one of the most common aspects
of a DevOps engineer's routine tasks. If tomorrow, our company policy states that we
should run web servers on the port 8080 instead of the port 80, only in a production
environment, imagine the headache you'd get having to change all these files
individually. Wouldn't it be better to have a single file that takes dynamic inputs,
which are specific to the host it's running on? This is exactly what templates are for
and, as depicted in the following diagram, a single template could replace a multitude
of static files:

Static files

template

Before we define what a template is, let's begin by understanding how to separate code
from data and how this would help us solve the problem of static content explosion.

Separating code and data
The real magic of infrastructure as code tools, such as Ansible, lies in its ability to
separate data and code. In our example, the default.conf file is a configuration file
that is specific to an Nginx web server. The configuration parameters, such as ports,
users, paths, and so on, remain generic and constant at all times, no matter who installs
and configures them. What is not constant are the values those parameters take. That's
what is specific to our organization. So, for this, we would decide the following:

•	 Which port should Nginx run on?
•	 Which user should own the web server process?
•	 Where should the log files go?
•	 How many worker processes should be run?

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[39]

Our organization-specific policies may also require us to pass different values to
these parameters based on the environment or geography the hosts run in.

Ansible splits these in to two parts:

•	 The code that is generic
•	 The data that is specific to an organization

This has two advantages; one advantage is that it solves our problem of static data
explosion. Now that we have separated the code and data, we can create config files
flexibly and dynamically. The second advantage, you may realize, is now that the
code and data are split, there is nothing in the code that is specific to a particular
organization. This makes it easy to share the site with the world for anyone who
finds it useful. That's exactly what you would find on Ansible-Galaxy or even on
GitHub, fueling the growth of tools, such as Ansible. Instead of reinventing the
wheel, you can download the code that someone else has written, customize it, fill in
the data specific to the code, and get the work done.

Now, how is this code separate from the data? The answer is that Ansible has
two primitives:

•	 Jinja templates (code)
•	 The variables (data)

The following diagram explains how the resulting file is generated from templates
and variables:

template

vars

resulting file

config {
port

{{ app_port }}
user {{ app_user

config {
port 80
user www

}

app_port = 80
app_user = www

www.it-ebooks.info

http://www.it-ebooks.info/

Separating Code and Data – Variables, Facts, and Templates

[40]

Templates provide placeholders in place of parameter values, which are then defined
in variables. Variables can then be fed in from various places, including roles,
playbooks, inventories, and even from the command line when you launch Ansible.
Let's now understand templates and variables in detail.

Jinja2 templates
What is Jinja all about? Jinja2 is a very popular and powerful Python-based
template engine. Since Ansible is written in Python, it becomes the default choice for
most users, just like other Python-based configuration management systems, such as
Fabric and SaltStack. The name Jinja originated from the Japanese word for temple,
which is similar in phonetics to the word template.

Some of the important features of Jinja2 are:

•	 It is fast and compiled just in time with the Python byte code
•	 It has an optional sandboxed environment
•	 It is easy to debug
•	 It supports template inheritance

The template formation
Templates look very similar to normal text-based files except for the occasional
variables or code that surrounds the special tags. These get evaluated and are
mostly replaced by values at runtime, creating a text file, which is then copied to the
destination host. The following are the two types of tags that Jinja2 templates accept:

•	 {{ }} embeds variables inside a template and prints its value in the
resulting file. This is the most common use of a template.
For example:
 {{ nginx_port }}

•	 {% %} embeds statements of code inside a template, for example, for a
loop, it embeds the if-else statements, which are evaluated at runtime but
are not printed.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[41]

Facts and variables
Now that we have looked at the code that Jinja2 templates provide, let's understand
where this data comes from, which is then embedded in the template at runtime.
Data can come from either facts or variables. When it comes to a Jinja2 template, the
same rules apply to the usage of facts and variables. Facts are a type of variable; the
differentiating factor here is the origin of the two. Facts are automatically available
and discovered at runtime, and variables are user-defined.

Automatic variables – facts
A lot of data in our systems is automatically discovered and made available to
Ansible by the managed hosts during the handshake process. This data is very useful
and tells us everything about that system, such as:

•	 The hostname, network interface, and IP address
•	 The system architecture
•	 The operating system
•	 The disk drives
•	 The processor used and amount of memory
•	 Whether it is a VM; if yes, is it a virtualization/cloud provider?

Facts are collected at the very beginning of an Ansible run.
Remember the line in the output that says GATHERING
FACTS *******? That's exactly when this happens.

You can find facts about any system by running the following command followed by
a shortened output:

$ ansible -i customhosts www -m setup | less

192.168.61.12 | success >> {
 "ansible_facts": {
 "ansible_all_ipv4_addresses": [
 "10.0.2.15",
 "192.168.61.12"
],
 "ansible_architecture": "i386",
 "ansible_bios_date": "12/01/2006",
 "ansible_cmdline": {
 "BOOT_IMAGE": "/vmlinuz-3.5.0-23-generic",

www.it-ebooks.info

http://www.it-ebooks.info/

Separating Code and Data – Variables, Facts, and Templates

[42]

 "quiet": true,
 "ro": true,
 "root": "/dev/mapper/vagrant-root"
 },
 "ansible_distribution": "Ubuntu",
 "ansible_distribution_major_version": "12",
 "ansible_distribution_version": "12.04",
 "ansible_domain": "vm",
 "ansible_fqdn": "vagrant.vm",
 "ansible_hostname": "vagrant",
 "ansible_nodename": "vagrant",
 "ansible_os_family": "Debian",
 "ansible_pkg_mgr": "apt",
 "ansible_processor": [
 "GenuineIntel",
 "Intel(R) Core(TM) i5-3210M CPU @ 2.50GHz"
],
 "ansible_processor_cores": 1,
 "ansible_processor_count": 2,
 "ansible_processor_threads_per_core": 1,
 "ansible_processor_vcpus": 2,
 "ansible_product_name": "VirtualBox",
 }
}

The preceding output is in Ansible's own format and uses its core setup module.
Akin to the setup module, there is another module by the name facter, which
discovers and displays facts in the format discovered with Puppet, another
configuration management system. The following is an example of how to use the
facter module to discover facts for the same host:

$ ansible -i customhosts www -m facter | less

While using the facter module, a point that you need to note is that this module
is not a core module and comes as part of extra modules. Extras modules are a
subset of the Ansible module, which is used less frequently and is less popular
in comparison with the core modules. Moreover, to use the facter module, you
require the "facter" and "ruby-json" packages preinstalled on the target host.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[43]

User-defined variables
We looked at facts, which are automatically available, and the amount of data that is
discovered is overwhelming. However, it does not provide us with every attribute of
our infrastructure that we need. For example, Ansible can not discover:

•	 Which port we want our web server to listen to
•	 Which user should own a process
•	 Which system the users need to create, with which authorization rules

All this data is external to a system profile and is to be provided by us, the users. It's
user-defined for sure, but how and where should we define it? That's what we are
going to look at next.

Where to define a variable
Where a variable can be defined from is a complex phenomenon, as Ansible offers
abundant choices in this regard. This also offers a lot of flexibility to users to
configure portions of their infrastructures divergently. For example, all Linux hosts
in a production environment should use local package repositories or web servers
in staging and should run on the port 8080. All this without changing the code, and
driven by data alone is done, by variables.

The following are the places from where Ansible accepts variables:

•	 The default directory inside a role
•	 Inventory variables

°° The host_vars and group_vars parameters defined in separate
directories

°° The host/group vars parameter defined in an inventory file

•	 Variables in playbooks and role parameters
•	 The vars directory inside a role and variables defined inside a play
•	 Extra variables provided with the -e option at runtime

How to define a variable
After looking at where to define the variable from, we will start looking at how to
define it at various places.

Here are some simple rules you can use to form a valid Ansible variable:

•	 A variable should always start with a letter

www.it-ebooks.info

http://www.it-ebooks.info/

Separating Code and Data – Variables, Facts, and Templates

[44]

•	 It can contain:
°° Letters
°° Numbers
°° Underscores

Let's take a look at the following table:

Valid variable Invalid variable
app_port app-port

userid_5 5userid

logdir log.dir

We looked at the precedence rules and now we know that there are multiple places
where you can define variables. Irrespective of the precedence levels, all use the
same syntax to define a variable.

To define a simple variable in a key-value pair format, use, var: value, for example:

 nginx_port: 80

A dictionary or hash can be defined as Nginx:

 port: 80
 user: www-data

An array could be defined as:

 nginx_listners:
 - '127.0.0.1:80'
 - '192.168.4.5:80'

Templating the Nginx configurations
You have learnt a lot about facts, variables, and templates. Now, lets transform our
Nginx role to be data driven. We will start templating the default.conf file for
Nginx that we created earlier. The approach toward converting a file into a template
would be as follows:

1.	 Create the directories required to hold templates and default variables inside
a role:
$ mkdir roles/nginx/templates

$ mkdir roles/nginx/defaults

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[45]

2.	 Always start with the actual configuration file, our end result of this process,
to know all of the parameters it would take. Then, work backwards. For
example, the configuration for the default.conf file on our system is
as follows:
 server {
 listen 80;
 server_name localhost;
 location / {
 root /usr/share/nginx/html;
 index index.html;
 }
 }

3.	 Identify the configuration parameters that you would like to generate
dynamically, remove the values for those parameters, note them down
separately, and replace them with template variables:
 Template Snippets:
 listen {{ nginx_port }} ;
 root {{ nginx_root }};
 index {{ nginx_index }};

 Variables:
 nginx_port: 80
 nginx_root: /usr/share/nginx/html
 nginx_index: index.html

4.	 If the values for any of the configuration parameters are supposed to be
sourced from facts, typically system parameters or topology information,
such as the hostname, IP address, and so on, then find out the relevant facts
with the help of the following command:
For example:
$ ansible -i customhosts www -m setup | less

To find out the hostname of the system:
$ ansible -i customhosts www -m setup | grep -i hostname

 "ansible_hostname": "vagrant",
 "ohai_hostname": "vagrant",

5.	 Use the discovered fact inside the template instead of a user-defined variable.
For example:
 server_name {{ ansible_hostname }},

www.it-ebooks.info

http://www.it-ebooks.info/

Separating Code and Data – Variables, Facts, and Templates

[46]

6.	 Save the resulting file inside the template's directory, ideally with the .j2
extension. For example, for roles/nginx/templates/default.conf.j2,
the resulting file becomes:
#roles/nginx/templates/default.conf.j2
server {
 listen {{ nginx_port }};
 server_name {{ ansible_hostname }};

 location / {
 root {{ nginx_root }};
 index {{ nginx_index }};
 }
}

7.	 Create roles/nginx/defaults/main.yml and store the sane defaults
as follows:

#file: roles/nginx/defaults/main.yml
nginx_port: 80
nginx_root: /usr/share/nginx/html
nginx_index: index.html

8.	 Once the template has been created, change the task in the configure.yml
file to use the template instead of the copy module:

9.	 Finally, it's time to remove the static file we used earlier with the
copy module:
$ rm roles/nginx/files/default.conf

Then it's time to run the Ansible playbook:
$ ansible-playbook -i customhosts site.yml

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[47]

Let's take a look at the following screenshot:

Let's analyze what happened during this run:

•	 We changed the configuration task to use the template instead of the copy
module, which is reflected in the screenshot when a task shows its changed
status

•	 Since the task has been updated, a notification gets triggered, which calls the
handler to restart the service

Our code tree for the Nginx role looks like the following after we make this change:

www.it-ebooks.info

http://www.it-ebooks.info/

Separating Code and Data – Variables, Facts, and Templates

[48]

Adding another layer – the MySQL role
So far, we have been focusing on the single tier of our infrastructure, that is, the web
server layer. Writing code for just one tier is not a lot of fun. Being a cool DevOps
team, we will create a multi-tier infrastructure with database, web server, and then,
a load balancer. We will start creating the MySQL role next, apply everything that
we have learnt so far, and extend that knowledge with a few new concepts.

Here is our specification for the MySQL role:

•	 It should install the MySQL server package
•	 It should configure 'my.cnf', which is the main configuration for the

MySQL server
•	 It should start the MySQL server daemon
•	 It should support Ubuntu 12.04 as well as CentOS/RedHat Enterprise 6.x

Creating the scaffolding for the roles with
Ansible-Galaxy
So far, we have been doing all the hard work to understand and create the directory
structure required by the roles. However, to make our lives easier, Ansible ships
with a tool called Ansible-Galaxy, which should help us initialize a role by creating
the scaffolding automatically and could help us follow the best practices. Ansible-
Galaxy actually does more than that. It's a utility to connect to the repository of the
freely available Ansible roles hosted at http://galaxy.ansible.com. This is similar
to the way we use CPAN or RubyGems.

Let's start by initializing the MySQL role with Ansible-Galaxy using the
following command:

$ ansible-galaxy init --init-path roles/ mysql

Here, the following is the analysis of the preceding command:

•	 init: This is the subcommand given to Ansible-Galaxy to create
the scaffolding

•	 --init-path or -p: These provide the path to the roles directory, under
which the directory structure is created

•	 mysql: This is the name of the role

www.it-ebooks.info

http://galaxy.ansible.com
http://www.it-ebooks.info/

Chapter 3

[49]

Let's take a look at the following screenshot:

The preceding diagram shows the directory layout created after you initialize the
role with Ansible-Galaxy, which creates an empty role with a structure suitable for
upload on to Galaxy. It also initializes the necessary components, including tasks,
handlers, vars, and meta files with placeholders.

Adding metadata to the role
We used the meta file earlier to specify the dependency on another role. In addition
to specifying the dependencies, meta files can specify much more data for the roles,
such as:

•	 The author and company information
•	 The supported OS and platforms
•	 A brief description of what a role does
•	 The Ansible versions supported
•	 The category of software that this role attempts to automate
•	 The licensing information

www.it-ebooks.info

http://www.it-ebooks.info/

Separating Code and Data – Variables, Facts, and Templates

[50]

Let's update all this data by editing roles/meta/main.yml:

galaxy_info:
 author: Gourav Shah
 description: MySQL Database Role
 company: PACKT
 min_ansible_version: 1.4
 platforms:
 - name: EL
 versions:
 - all
 - name: Ubuntu
 versions:
 - all
 categories:
 - database:sql

In the preceding snippet, we added metadata to the role, such as the author and
company details, a brief description of what a role does, its compatibility with
Ansible versions, the supported platforms, the category the role belongs to,
and so on.

Using variables in tasks and handlers
You have learnt how to use variables in templates. That's not all the code there is
used to define the variables. In addition to templates, we can also use variables
inside tasks, plays, and so on. This time around, we have also committed to
provide a multiplatform role, supporting Ubuntu and RedHat both. Unlike Chef
and Puppet, Ansible uses OS-specific modules (for example, apt and yum) and not
platform-independent resources (package). We will have to create OS-specific task
files and call them selectively based on the OS they are going to run on. Here's how
we do so:

•	 We will find a fact that will determine the OS platform/family. We have
a couple of options here:

°° ansible_distribution

°° ansible_os_family

•	 RedHat, CentOS, and Amazon Linux are all based on rpm and have similar
behavior. The same goes for Ubuntu and Debian operating systems,
which are part of the same platform family. Hence, we choose to use the
ansible_os_family fact, which will give us wider support.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[51]

•	 We will define variables from two places in the roles:
°° From the default vars file with the sane defaults for Debian.
°° From the variables specific to os_family if not Debian.

•	 We will also create OS-specific task files, since we may need to call different
modules (apt versus yum) and additional tasks that are specific to that OS.

•	 For handlers and tasks, we will use variables to provide OS-specific names
(for example, MySQL versus mysqld, for service).

•	 Finally, we will create the main.yml file, which will selectively include
host-specific vars as well as task files by checking the value of this fact.

Creating variables
We will begin with the creation of variables. Let's set up the sane defaults for
Debian/Ubuntu inside the /mysql/defaults/main.yml file:

#roles/mysql/defaults/main.yml
mysql_user: mysql
mysql_port: 3306
mysql_datadir: /var/lib/mysql
mysql_bind: 127.0.0.1
mysql_pkg: mysql-server
mysql_pid: /var/run/mysqld/mysqld.pid
mysql_socket: /var/run/mysqld/mysqld.sock
mysql_cnfpath: /etc/mysql/my.cnf
mysql_service: mysql

Then it will run on RedHat/CentOS machines, however, we will need to override a
few of these variables to configure the RedHat-specific parameters.

Note that the filename should match the exact name (RedHat)
that is returned by the ansible_os_family fact with the
correct case.

We will create and edit the roles/mysql/vars/RedHat.yml file, as follows:

RedHat Specific Configs.
roles/mysql/vars/RedHat.yml
mysql_socket: /var/lib/mysql/mysql.sock
mysql_cnfpath: /etc/my.cnf
mysql_service: mysqld
mysql_bind: 0.0.0.0

www.it-ebooks.info

http://www.it-ebooks.info/

Separating Code and Data – Variables, Facts, and Templates

[52]

Finally, we will create the group_vars fact with one variable to override our default
settings. You have learnt that you can specify variables in the inventory files,
the group_vars and the host_vars facts. We will start using the group_vars fact
for now. You could either create these in your inventory file or create a separate
directory for it with the name group_vars. We are going to take the second
approach, which is recommended:

From our top level dir, which also holds site.yml

$ mkdir group_vars

$ touch group_vars/all

Edit the group_vars/all file and add the following line:

mysql_bind: "{{ ansible_eth0.ipv4.address }}"

Creating tasks
It's now time to create tasks. Following the best practices, we will split tasks into
multiple files and use include statements, just like we did for Nginx. Let's start by
creating the default main.yml file inside roles/mysql/tasks, as follows:

This is main tasks file for mysql role
filename: roles/mysql/tasks/main.yml
Load vars specific to OS Family.
- include_vars: "{{ ansible_os_family }}.yml"
 when: ansible_os_family != 'Debian'

- include: install_RedHat.yml
 when: ansible_os_family == 'RedHat'

- include: install_Debian.yml
 when: ansible_os_family == 'Debian'

- include: configure.yml
- include: service.yml

We saw the include statements earlier. What's new here is the include_vars fact
and the use of the ansible_os_family fact. If you notice:

•	 We are using the ansible_os_family fact here with the include_vars
fact to determine whether to include OS-specific variables when the OS
family is not Debian. Why not for the Debian system? That's because we
are already specifying Debian-specific configurations in the default file.
The include_vars fact works well with the preceding conditionals.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[53]

•	 We are also calling OS-specific installation scripts using the when condition.
We have included two scripts for now to support the Debian and RedHat
families. However, later on, we could just extend the scripts by adding more
install_<os_family>.yml scripts to support additional platforms.

Now, let's create the install tasks for Debian and RedHat:

$ vim roles/mysql/tasks/install_Debian.yml

Then edit the file, as follows:

filename: roles/mysql/tasks/install_Debian.yml
 - name: install mysql server
 apt:
 name:"{{ mysql_pkg }}"
 update_cache:yes

$ vim roles/mysql/tasks/install_Redhat.yml

After running the preceding command, edit the file as follows:

filename: roles/mysql/tasks/install_RedHat.yml
- name: install mysql server
 yum:
 name:"{{ mysql_pkg }}"
 update_cache:yes

In the preceding example, we used the apt and yum modules, respectively, for
Debian- and RedHat-based systems. Following the best practices, we will write a
data-driven role by providing the package name using a variable mysql_pkg. This
variable is set based on the platform it runs on. Let's take a look at the following steps:

1.	 The next step is to create a task to configure MySQL. Since we know that
every configuration file should be a template, we will create one for the my.cnf
file, the default configuration file for the MySQL server:
$ touch roles/mysql/templates/my.cnf.j2

Then edit the file, as follows:
Notice:This file is being managed by Ansible
Any manual updates will be overwritten
filename: roles/mysql/templates/my.cnf.j2
[mysqld]
user = {{ mysql_user | default("mysql") }}
pid-file	 = {{ mysql_pid }}

www.it-ebooks.info

http://www.it-ebooks.info/

Separating Code and Data – Variables, Facts, and Templates

[54]

socket = {{ mysql_socket }}
port = {{ mysql_port }}
datadir = {{ mysql_datadir }}
bind-address = {{ mysql_bind }}

2.	 We created a template with the .j2 extension since it's a Jinja2 template. It's
not a must, but a recommended practice.

3.	 All configuration parameters come from variables in the {{var}} format. This is
a recommended practice for managing a configuration file. We could let the
attribute precedence decide where the values comes from.

It's good practice to add a notice to every file being
managed by Ansible. This will avoid possible manual
updates or ad hoc changes.

We will write a task that will manage this template, and copy over the resulting file
to the desired path on the host:

filename: roles/mysql/tasks/configure.yml
 - name: create mysql config
 template: src="my.cnf" dest="{{ mysql_cnfpath }}" mode=0644
 notify:
 - restart mysql service

We have a common configuration file template; however, the path to copy this varies
from platform to platform, also based on the flavor of MySQL that you plan to use.
Here, we are using a MySQL distribution that comes with the Ubuntu and CentOS
repositories by default, and we will set the mysql_cnfpath path from the role
variables, as follows:

•	 On Ubuntu/Debian, use the command: mysql_cnfpath = /etc/mysql/
my.cnf

•	 On RedHat/CentOS, use the command: mysql_cnfpath = /etc/my.cnf

Also, we are sending the notification to the MySQL service restart handler. This
will make sure that if there are any changes to the configuration file, the service will
automatically be restarted.

To manage a service, we will create a service task and handler:

The task:

$ touch roles/mysql/tasks/service.yml

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[55]

Then edit the file, as follows:

filename: roles/mysql/tasks/service.yml
 - name: start mysql server
 service: name="{{ mysql_service }}" state=started

The handler:

$ touch roles/mysql/handlers/main.yml

After running the preceding commands, edit the file as follows:

handlers file for mysql
filename: roles/mysql/handlers/main.yml
- name: restart mysql service
 service: name="{{ mysql_service }}" state=restarted

Here, the task and handler are similar to the Nginx service, so nothing much needs
to be described. The only change is that we are using the mysql_service variable to
decide the service name to start, or restart, the service.

Using variables in playbooks
Variables can also be specified in playbooks. The preferred method of doing so
would be to pass them as role parameters, an example of which is shown as follows.
This is typically useful when you have defaults in the role and you'd like to override
some configuration parameters specific to your setup. That way, roles are still
generic and sharable, and do not contain organization-specific data.

We are going to create a playbook to manage our databases and then we will include
it in the site-wide playbook, as follows:

$ touch db.yml

Then edit the file, as follows:

Playbook for Database Servers
filename: db.yml
- hosts: db
 remote_user: vagrant
 sudo: yes
 roles:
 - { role: mysql, mysql_bind: "{{ ansible_eth1.ipv4.address
 }}" }

www.it-ebooks.info

http://www.it-ebooks.info/

Separating Code and Data – Variables, Facts, and Templates

[56]

Here, we assume that the host's inventory contains a host group by the name db.
In our example, we have two db servers, one running on Ubuntu, the other running
on CentOS. This is added as:

[db]
192.168.61.11 ansible_ssh_user=vagrant
ansible_ssh_private_key_file=/vagrant/insecure_private_key
192.168.61.14 ansible_ssh_user=vagrant
ansible_ssh_private_key_file=/vagrant/insecure_private_key

In the preceding playbook, we used a parameterized role, which overrides one
variable, that is, mysql_bind. The value is set from a multilevel fact.

Let's take a look at the following screenshot:

A multilevel fact can also be specified as ansible_eth1["ipv4"]["address"]
and both the formats are valid. Parameterized roles are also useful when we want
to create multiple instances of the role, for example, virtual hosts and WordPress
instances running on different ports.

Let's now include this playbook in the top-level site.yml file using the include
statement:

Edit the site.yml file as follows:

This is a sitewide playbook
filename: site.yml
- include: www.yml
- include: db.yml

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[57]

Applying a MySQL role to the DB servers
We are all set to configure our database servers. Let's go ahead and apply the newly
created role to all the db servers we have in the inventory:

$ ansible-playbook -i customhosts site.yml

The following image contains the snippet of the output which is only relevant to the
database play:

We have explained the Ansible run in the previous chapters, when we created our
first playbook as well as when we applied the Nginx role. The only new concept here
is the include_var part. Ansible will check our condition based on the ansible_os_
family fact and call variables specific to the OS. In our case, we have one Ubuntu
and CentOS host each, and both of them call for the RedHat.yml file when it runs on
the CentOS host alone.

What will be really interesting here is to find out what happened to our configuration
files on each platform and which variables took precedence.

www.it-ebooks.info

http://www.it-ebooks.info/

Separating Code and Data – Variables, Facts, and Templates

[58]

Variable precedence
We specified variable defaults, used them in inventory files, and defined the same
variable from different places (for example, defaults, vars, and inventory). Let's
now analyze the output of the templates to understand what happened with all
those variables.

The following is the figure showing the my.cnf file on Ubuntu:

The following is the analysis of the screenshot:

•	 The file has a notice in the comments section. This can deter admins from
making manual changes to the file.

•	 Most of the variables come from the defaults in a role. This is because Debian
is our default family of operating systems and we already have sane defaults
set for it. Similarly, for other operating system platforms, we are setting
variable defaults from the vars directory in a role.

•	 Even though the bind_address parameter is specified in the defaults and
group_vars, it takes a value from the playbook's role parameter, which has a
higher precedence over the other two levels.

The following diagram explains what happens when there are variables defined at
various levels. All of them are merged at runtime. If the same variables are defined
in more than one place, the precedence rules apply:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[59]

vars

-e switch

defaults

inventory

playbooks

merged variables

To understand the precedence rules, let's look at what happened on our CentOS host.
The following is the my.cnf file created on CentOS:

As seen in the preceding figure, in the case of CentOS, we see some interesting
results:

•	 The values for user, pid, datadir, and port come from the defaults. We have
looked at the merge order. If the variables are not identical, they are merged
to create the final configuration.

www.it-ebooks.info

http://www.it-ebooks.info/

Separating Code and Data – Variables, Facts, and Templates

[60]

•	 The value for a socket comes from vars as that's the only place it has been
defined. Nevertheless, we want this socket to be constant for the RedHat-based
system, hence, we specified it in the vars directory of the role.

•	 The bind_address parameter comes from the vars directory again.
This is interesting as we have the mysql_bind variable defined at the
following locations:

°° Default in a role
°° group_vars

°° playbook

°° vars in a role

The following figure depicts the precedence rules when we define the same variable
more than once:

Since our role defines the bind_address parameter in the vars directory, it takes
precedence over the rest.

There is a way to override a role parameter using extra variables or the -e switch
while running Ansible. This is the supreme level of precedence for a variable that
Ansible manages.

For example:

ansible-playbook -i customhosts db.yml -e mysql_bind=127.0.0.1

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[61]

In the preceding launch command, we used the -e switch, which will override all the
other variable levels and make sure that the MySQL server is bound to 127.0.0.1.

The best practices for variable usage
Overwhelming, eh? Do not worry. We will give you the recommendations on the
best practices while using variables:

•	 Start with defaults in a role. This has the lowest precedence of all. This is also
a good place to provide the sane defaults of your application, which can be
later overridden from various places.

•	 Group variables are very useful. A lot of the time we will do region-specific
or environment-specific configurations. We would also apply certain roles to
a certain group of servers, for example, for all web servers in Asia, we apply
the Nginx role. There is also a default group by the name "all", which will
contain all the hosts for all groups. It's a good practice to put the variables
common for all groups in "all" (group_vars/all), which can then be
overridden by more specific groups.

•	 If there are host-specific exceptions, use hosts_vars, for example,
host_vars/specialhost.example.org.

•	 If you would like to separate variables in different files, create directories
named after the hosts and put the variable files inside it. All files inside those
directories will be evaluated:

°° group_vars/asia/web

°° host_vars/specialhost/nginx

°° host_vars/specialhost/mysql

•	 If you would like to keep your roles generic and sharable, use defaults in the
roles and then specify organization-specific variables from playbooks. These
can be specified as role parameters.

•	 If you would like role variables to always take precedence over inventory
variables and playbooks, specify them in the vars directory inside a role.
This is useful for providing role constants for specific platforms.

•	 Finally, if you would like to override any of the preceding variables and
provide some data during runtime, provide an extra variable with Ansible
commands using the -e option.

www.it-ebooks.info

http://www.it-ebooks.info/

Separating Code and Data – Variables, Facts, and Templates

[62]

By now, our tree for the MySQL role and DB playbook should look like the following
figure:

Review questions
Do you think you've understood the chapter well enough? Try answering the
following questions to test your understanding:

1.	 How are Jinja2 templates different from static files?
2.	 What are facts? How are they discovered?
3.	 What is the difference between {{ }} and {% %} in the context of Jinja2

templates?
4.	 Can you use a variable anywhere apart from templates? If yes, where?
5.	 If you define a variable foo in the vars directory in a role and the same

variable in the hosts_var file, which of these will take precedence?
6.	 How do you write Ansible roles that are supported on multiple platforms?
7.	 Where can you specify the author and licensing information in a role?

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[63]

8.	 How do you provide variables while launching an Ansible-playbook command?
9.	 Which command would you use to create a directory structure required by

the roles automatically?
10.	 How do you override a variable specified in the vars directory of a role?

Summary
We started this chapter by learning about why and how to separate data from code
using Ansible variables, facts, and Jinja2 templates. You learnt how to create
data-driven roles by providing variables and facts in templates, tasks, handlers, and
playbooks. Additionally, we created a new role for the database tier, which supports
both the Debian and RedHat families of operating systems. You learnt what system
facts are and how they are discovered and used. You learnt how variables can be
specified from more than one place, how they are merged, and the precedence rules.
Finally, you learnt about the best practices for using variables.

In the next chapter, we will work with custom commands and scripts, understand
what registered variables are, and deploy a sample WordPress application using all
this information.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[65]

Bringing In Your
Code – Custom

Commands and Scripts
Ansible comes with a wide variety of built-in modules that allow us to manage
various system components, for example, users, packages, network, files, and
services. Ansible's battery-included approach also provides the ability to integrate
the components with cloud platforms, databases, and applications such as Jira,
Apache, IRC, and Nagios, and so on. However, every now and then, we would
find ourselves in a position where we may not find a module that exactly does the
job for us. For example, installing a package from source involves downloading
it, extracting a source tarball, followed by the make command, and finally, "make
install". There is no single module that does this. There will also be times when we
would like to bring in our existing scripts that we have spent nights creating and just
have them invoked or scheduled with Ansible, for example, nightly backup scripts.
Ansible's command modules would come to our rescue in such situations.

In this chapter, we are going to introduce you to:

•	 How to run custom commands and scripts
•	 Ansible command modules: raw, command, shell, and script
•	 How to control the idempotence of a command module
•	 Registered variables
•	 How to create a WordPress application

www.it-ebooks.info

http://www.it-ebooks.info/

Bringing In Your Code – Custom Commands and Scripts

[66]

The command modules
Ansible has four modules that fall in to this category and provide us the options to
choose from while running system commands or scripts. The four modules are:

•	 Raw
•	 Command
•	 Shell
•	 Script

We will start learning about these one at a time.

Using the raw module
Most Ansible modules require Python to be present on the target node. However, as
the name suggests, a raw module provides a way to communicate with hosts over
SSH to execute raw commands without getting Python involved. The use of this
module will bypass the module subsystem of Ansible completely. This can come in
really handy in certain special situations or cases. For example:

•	 For legacy systems running a Python version older than 2.6, Ansible requires
the Python-simplejson package to be installed before you run playbooks.
A raw module can be used to connect to the target host and install the
prerequisite package before executing any Ansible code.

•	 In the case of network devices, such as routers, switches, and other
embedded systems, Python may not be present at all. These devices can still
be managed with Ansible simply using a raw module.

Apart from these exceptions, for all other cases, it is recommended that you use
either command or shell modules, as they offer ways to control when, from where,
and how the commands are run.

Let's take a look at the following given examples:

$ ansible -i customhosts all -m raw -a "uptime"

[Output]

192.168.61.13 | success | rc=0 >>

 04:21:10 up 1 min, 1 user, load average: 0.27, 0.10, 0.04

192.168.61.11 | success | rc=0 >>

 04:21:10 up 5 min, 1 user, load average: 0.01, 0.07, 0.05

192.168.61.12 | success | rc=0 >>

 04:21:12 up 9:04, 1 user, load average: 0.00, 0.01, 0.05

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[67]

The preceding command connects to all the hosts in the inventory provided with
customhosts using SSH, runs a raw command uptime, and returns the results. This
would work even if the target host does not have Python installed. This is equivalent
to writing a for loop to an ad hoc shell command on a group of hosts.

The same command can be converted to a task as:

 - name: running a raw command
 raw: uptime

Using the command module
This is the most recommended module for executing commands on target nodes.
This module takes the free-form command sequence and allows you to run any
command that could be launched from a command-line interface. In addition to the
command, we could optionally specify:

•	 Which directory to run the command from
•	 Which shell to use for execution
•	 When not to run the commands

Let's take a look at the following example:

 - name: run a command on target node
 command: ls -ltr
 args:
 chdir: /etc

Here, a command module is called to run ls -ltr on the target hosts with an
argument to change the directory to /etc before running the command.

In addition to writing it as a task, the command module can directly be invoked as:

$ ansible -i customhosts all -m command -a "ls -ltr"

Using the shell module
This module is very similar to the command module we just learnt about. It takes
a free-form command and optional parameters and executes them on the target
node. However, there are subtle differences between shell modules and command
modules, which are listed, as follows:

•	 Shell runs the command through the '/bin/sh' shell on the target host, which
also means that any command that gets executed with this module has access
to all the shell variables on that system

www.it-ebooks.info

http://www.it-ebooks.info/

Bringing In Your Code – Custom Commands and Scripts

[68]

•	 Unlike the command module, shell also allows the usage of operators, such
as redirects (<, <<, >> , >), pipes (|) , &&, and ||

•	 Shell is less secure than a command module, as it can be affected by a shell
environment on the remote host

Let's take a look at the following example:

 - name: run a shell command on target node
 shell: ls -ltr | grep host >> /tmp/hostconfigs
 args:
 chdir: /etc

Similar to using the command module, the preceding task runs the command
sequence with the shell module. However, in this case, it accepts operators such
as | and >>, does filtering with grep, and redirects the results to a file.

Instead of specifying this task as part of the playbook, it can be run as an ad hoc
command with Ansible as:

ansible -i customhosts all --sudo -m shell \
 -a "ls -ltr | grep host >> /tmp/hostconfigs2 \
chdir=/etc"

Here, you need to explicitly specify the --sudo option, as well as module options as
arguments, such as chdir=/etc and the actual command sequence.

Using the script module
The command modules that we learnt about so far only allow the execution of some
system commands on the remote host. There will be situations where we
would have an existing script that needs to be copied to the remote hosts and then
executed there. Using the shell or command modules, this could be achieved in the
following two steps:

1.	 Use a copy module to transfer the script file to a remote host.
2.	 Then, use a command or shell module to execute the script transferred

previously.

Ansible has a tailor-made module that solves this in a more efficient way. Using
a script module instead of command or shell, we can copy and execute a script in
one step.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[69]

For example, consider the following code snippet:

 - name: run script sourced from inside a role
 script: backup.sh
 - name: run script sourced from a system path on target host
 script: /usr/local/bin/backup.sh

As shown in the preceding code snippet, a script can be sourced either from:

•	 An inside file directory of the role when invoking this module from a task
inside a role as shown in the first example

•	 An absolute system path on the control host (this is the host that runs
Ansible commands)

Just like all the other modules, a script can also be invoked as an ad hoc command,
as follows:

$ ansible -i customhosts www --sudo -m script \

 -a "/usr/local/backup.sh"

Here, the script module is invoked only on hosts that are part of the www group in
the inventory. This command will copy a script at /usr/local/backup.sh from the
control host and run it on the target nodes; in this case, all hosts in the www group.

Deploying a WordPress application – a
hands-on approach
In our first iteration, we already configured an Nginx web server and a MySQL
database to host a simple web page. We will now configure a WordPress application
on the web server to host news and blogs.

Scenario:
Following our success of launching a simple web page in iteration
1, the project management department has asked us to set up a
WordPress application to serve news articles and blogs in iteration 2.

WordPress is a popular open source web publishing framework based on the LAMP
platform, which is Linux, Apache, MySQL, and PHP. WordPress is a simple, yet
flexible, open source application that powers a lot of blogs and dynamic websites.
Running WordPress requires a web server, PHP, and MySQL database. We already
have an Nginx web server and MySQL database configured. We will begin by
installing and configuring WordPress by creating a role for it and then later on, we
will configure PHP.

www.it-ebooks.info

http://www.it-ebooks.info/

Bringing In Your Code – Custom Commands and Scripts

[70]

To create the role, we will use the Ansible-Galaxy tool that we learnt about in the
previous chapter:

$ ansible-galaxy init --init-path roles/ wordpress

This will create the scaffolding required for the WordPress role. By now, we know
that the core logic goes in to tasks and is supported by files, templates, handlers, and
so on. We will begin by writing tasks to install and configure WordPress. First, we
will create the main tasks file as follows:

tasks file for wordpress
filename: roles/wordpress/tasks/main.yml
 - include: install.yml
 - include: configure.yml

We are following best practices and further modularizing tasks
here. Instead of putting everything in the main.yml file, we
will create a install.yml file and a configure.yml file and
include them from the main file.

Installing WordPress
The installation process of WordPress will be handled from the install.yml file in
the tasks directory. The process of installing WordPress typically involves:

1.	 Downloading the WordPress installation package from
https://wordpress.org.

2.	 Extracting the installation package.
3.	 Moving the extracted directory inside the document's root directory of the

web server.

We will start writing code for each of the preceding steps mentioned, as follows:

filename: roles/wordpress/tasks/install.yml
 - name: download wordpress
 command: /usr/bin/wget -c https://wordpress.org/latest.tar.gz
 args:
 chdir: "{{ wp_srcdir }}"
 creates: "{{ wp_srcdir }}/latest.tar.gz"
 register: wp_download

www.it-ebooks.info

https://wordpress.org
http://www.it-ebooks.info/

Chapter 4

[71]

We saw some new features in the preceding steps. Let's analyze this code:

•	 We are using a new style to write tasks. In addition to using key-value pairs
for tasks, we could separate parameters and write them one parameter per
line in the key-value format.

•	 To download the WordPress installer, we used the command module with
the wget command. The command takes the executable sequence with
additional arguments, which are chdir, and creates.

•	 Creates is a special option here. With this, we specified the path to the file
where WordPress installer is being downloaded. We will look at how this
is useful.

•	 We also registered the result of this module in a variable with the name
wp_download, which we will use in subsequent tasks.

It is recommended that you use the get_url module, which
is built in to Ansible to download files using the HTTP/FTP
protocol. Since we want to demonstrate the usage of command
modules, we chose to use that instead of using the get_url
module.

Let's now look at the new concepts that we introduced previously.

Controlling the idempotence of command modules
Ansible comes with a wide range of modules built in it. As we learnt in Chapter 1,
Blueprinting Your Infrastructure, most of these modules are idempotent, and the logic
to determine the configuration drift is built in to the module code.

However, command modules allow us to run shell commands that are not
idempotent by nature. Since command modules have no way to determine the
outcome of the task, it is expected that these modules are not idempotent by default.
Ansible provides us with a few options to make these modules run conditionally
and make them idempotent.

The following are the two parameters that determine whether a command is run
or not:

•	 Creates

•	 Removes

Both accept filename as the value of the parameter. In the case of creates, the
command will not run if the file exists. The removes command does the opposite.

www.it-ebooks.info

http://www.it-ebooks.info/

Bringing In Your Code – Custom Commands and Scripts

[72]

The "creates" and "removes" options are applicable for all command modules
except for raw.

Here are some guidelines on how to use creates and removes flags:

•	 If the command sequence or script that you are executing creates a file,
provide that filename as a parameter value

•	 If the command sequence does not create a flag, make sure you incorporate
the logic of creating a flag file in your command sequence or script

The registered variables
We looked at variables earlier. However, we have never registered one before. In the
tasks that we wrote to download WordPress, we use the following option:

 register: wp_download

This option stores the result of the task in a variable by the name wp_download. This
registered result can then be accessed later. The following are some of the important
components of a registered variable:

•	 changed: This shows the status of whether the state was changed
•	 cmd: Through this, the command sequence is launched
•	 rc: This refers to the return code
•	 stdout: This is the output of the command
•	 stdout_lines: This is the output line by line
•	 stderr: These state the errors, if any

These can then be accessed as wp_download.rc, wp_download.stdout and could
be used inside a template, in an action line, or more commonly, with the when
statements. In this case, we are going to use the return code of wp_download to
decide whether to extract the package or not. This makes sense because there is no
point in extracting a file that does not even exist.

Extracting WordPress with a shell module
Let's now write a task to extract the WordPress installer and move it to the desired
location. Before this, we also need to make sure that the document root directory has
been created before running this code:

 # filename: roles/wordpress/tasks/install.yml
 - name: create nginx docroot
 file:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[73]

 path: "{{ wp_docroot }}"
 state: directory
 owner: "{{ wp_user }}"
 group: "{{ wp_group }}"

 - name: extract wordpress
 shell: "tar xzf latest.tar.gz && mv wordpress {{ wp_docroot
 }}/{{ wp_sitedir }}"
 args:
 chdir: "{{ wp_srcdir }}"
 creates: "{{ wp_docroot }}/{{ wp_sitedir }}"
 when: wp_download.rc == 0

Let's now analyze what we just wrote:

•	 We use the file module to create the document root directory for a web
server. Parameters such as path, user, and group all come from variables.

•	 To extract WordPress, we use the shell module instead of a command. This
is because we are combining the two commands with the && operator here,
which the command module does not support.

•	 We use the when statement to decide whether to run extract commands
or not. To check the condition, we use the return code of the download
command that we stored in the registered variable wp_download earlier.

Configuring WordPress
After downloading and extracting WordPress, the next step is to configure it. The
main configuration for WordPress is inside wp-config.php under the wordpress
directory that we extracted. As a good practice, we will use a template to manage
this configuration file. The following is the code to configure WordPress:

filename: roles/wordpress/tasks/configure.yml
 - name: change permissions for wordpress site
 file:
 path: "{{ wp_docroot }}/{{ wp_sitedir }}"
 state: directory
 owner: "{{ wp_user }}"
 group: "{{ wp_group }}"
 recurse: true

 - name: get unique salt for wordpress
 local_action: command curl https://api.wordpress.org/secret-
 key/1.1/salt

www.it-ebooks.info

http://www.it-ebooks.info/

Bringing In Your Code – Custom Commands and Scripts

[74]

 register: wp_salt

 - name: copy wordpress template
 template:
 src: wp-config.php.j2
 dest: "{{ wp_docroot }}/{{ wp_sitedir }}/wp-config.php"
 mode: 0644

Let's analyze this code:

•	 The first task sets permissions for all WordPress files recursively.
•	 The second task runs a command locally and registers the results in the

wp_salt variable. This is to provide WordPress with secret keys for
additional security. This variable will be used inside a template this time.

•	 The final task is to generate a Jinja2 template and copy it over to the target
host as the wp-config.php file.

Let's also look at the Jinja2 template:

filename: roles/wordpress/templates/wp-config.php.j2
<?php
define('DB_NAME', 'wp_dbname');
define('DB_USER', 'wp_dbuser');
define('DB_PASSWORD', '{{ wp_dbpass }}');
define('DB_HOST', '{{ wp_dbhost }}');
define('DB_CHARSET', 'utf8');
define('DB_COLLATE', '');
{{ wp_salt.stdout }}
$table_prefix = 'wp_';
define('WP_DEBUG', false);
if (!defined('ABSPATH'))
 define('ABSPATH', dirname(__FILE__) . '/');
require_once(ABSPATH . 'wp-settings.php');

Here, we are filling in the values of the configuration parameters from variables.
What is also interesting is that we are embedding the output of the salt download
using the stdout variables:

 {{ wp_salt.stdout }}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[75]

The resulting file that is created from this template after filling in the variables and
the stdut from a registered variable will be as follows:

We will now add this new role to the www.yml playbook, so that it gets executed on
all our web servers:

#filename: www.yml
 roles:
 - nginx
 - wordpress

Then, we will run the Ansible playbook only for web servers as:

$ ansible-playbook www.yml -i customhosts

This will download, extract, and configure WordPress on all web server hosts. We
still have not installed PHP and configured Nginx to serve WordPress pages, so our
changes won't be reflected as yet.

Review questions
Do you think you've understood the chapter well enough? Try answering the
following questions to test your understanding:

1.	 Why do we need command modules when Ansible has a battery-included
approach?

2.	 When and why do we use the raw module?

www.it-ebooks.info

http://www.it-ebooks.info/

Bringing In Your Code – Custom Commands and Scripts

[76]

3.	 How do we use the creates parameter with a shell when the command
being executed does not create a file?

4.	 How are command and shell modules different? When would you use
a shell?

5.	 If var3 is a registered variable, how would you print its output in a template?

Summary
In this chapter, you learnt about how to run custom commands and scripts using
Ansible's command modules, that is, raw, command, shell, and script. You also
learnt how to control the idempotence of command modules using the creates and
removes flags. We started using registered variables to store the result of a task that
can then be used later to conditionally run other tasks or embed output in a template.
Finally, we created a role to install and configure a WordPress application.

In the next chapter, we are going to start learning about how to control execution
flow using conditionals, how to apply roles selectively, and also how to use
conditional control structures in templates.

www.it-ebooks.info

http://www.it-ebooks.info/

[77]

Controlling Execution
Flow – Conditionals

Control structures refer to anything and everything that have an effect on a
program's execution flow. Control structures are mainly of the following two types:

•	 Conditional
•	 Iterative

At times, we need to execute code conditionally based on a value of a variable, type
of platform, or even a result of some other command. There are times when we also
need to iterate multiple objects, such as list hashes or multilevel variables.

Most programming languages and tools use powerful but machine-friendly
constructs, such as if else, for, unless, do while, and so on. However, Ansible
stays true to its design tenet of being a human-friendly automation language and
manages to achieve the same with the omnipotent when and with_* constructs,
which are closer to the English language. Let's begin to explore how it does so.

In this chapter, we are going to cover the following topics:

•	 Using conditional controls with the when statements
•	 Using variables and facts to skip subroutines
•	 Applying roles selectively
•	 The conditional control structures in Jinja2 templates

www.it-ebooks.info

http://www.it-ebooks.info/

Controlling Execution Flow – Conditionals

[78]

The conditional control structure
Conditional control structures allow Ansible to follow an alternate path, skip a
task, or select a specific file to import based on certain conditions. In a generic
programming language, this is done with the help of if-then, else if, else,
case statements. Ansible does this using the "when" statement. Some example
conditions are:

•	 Whether a certain variable is defined
•	 Whether an earlier command sequence is successful
•	 Whether the task has run before
•	 Whether a platform on a target node matches the supported platforms
•	 Whether a certain file exists

The when statements
We have already used the when statement to extract the WordPress archive based on
the result of another command, which is:

- name: download wordpress
 register: wp_download
- name: extract wordpress
 when: wp_download.rc == 0

This would be vaguely equivalent to writing a shell snippet, as follows:

DOWNLOAD_WORDPRESS
var=`echo $?
if [$var -eq 0]
then
 EXTRACT_WORDPRESS()
fi

In addition to checking the preceding code, we could simply write conditions based
on the result of the task itself, as follows:

- name: extract wordpress
 when: wp_download|success
- name: notify devops engineers
 when: wp_download|failed

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[79]

For the failed statement to work, we need to add the ignore_errors: True
statement to the earlier task that registers the variable. The following flowchart
depicts the same logic:

download wordpress

notifydownload
successful?

extract wordpress

Fact-based selection
Facts are a good source of information to detect platform-specific information and
make a choice based on it, especially when you have hybrid environments. Based
on this selection, we could:

•	 Decide whether to execute a task
•	 Decide whether to include a task file
•	 Decide whether to import a file
•	 Decide whether to apply a role on the target node

We have already used fact-based selection while writing MySQL, where we used the
fact ansible_os_family to:

1.	 Import the vars file for non-Debian-based systems.
2.	 Include platform-specific tasks for package installation.

www.it-ebooks.info

http://www.it-ebooks.info/

Controlling Execution Flow – Conditionals

[80]

The following code snippet shows both the use cases:

Refactoring the MySQL role
Our existing MySQL role installs and configures only the server. More often than
not, all we need to do is just install the MySQL client package and not the server.
We don't have the ability to selectively do so.

The scenario:
We have been tasked to refactor the MySQL role and make
it conditionally install the MySQL server based on a variable
value. By default, it should just install MySQL client packages.

Boolean variables could be useful to set up an an on/off switch. We will add a
variable and set its default value to false. This time, we will create a multilevel
variable or a nested hash.

Multilevel variable dictionaries
So far, we have been naming variables as mysql_bind, mysql_port, and so on and
using an underscore to categorize them. Variables can instead be better categorized
and organized if you define them with multiple-level dictionaries, for example:

mysql:
 config:
 bind: 127.0.0.1
 port: 3306

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[81]

Multilevel variables can then be accessed inside the code as mysql['config]
['bind'] or mysql['config]['port']. Let's now update the roles/mysql/
defaults/main.yml file to use multilevel variables and also create a new Boolean
variable mysql.server, which acts as a flag:

Additionally, we would have to update files in the vars directory in the mysql role to
define the variables with a new style, all tasks, handlers, and templates to reference
them appropriately. This process is added as part of the text to avoid redundancy.

Merging hashes
Multilevel variables or, in essence, dictionaries defined from different locations may
need to be merged. For example, if we define default configuration parameters in
the role default and then override a few from the vars directory in the role, the
resultant variable hash should contain items from the defaults plus overridden
values from vars.

Let's take a look at the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Controlling Execution Flow – Conditionals

[82]

However, by default, Ansible will replace the dictionary, and in the preceding
example, instead of getting a merged dictionary, we would lose the user and port
vars as vars in the role has higher precedence. This can be avoided by setting the
hash_behavior parameter to merge instead of replace, as follows:

/etc/ansible/ansible.cfg
 hash_behaviour=merge

This should be set on the Ansible control host and does not require us to restart
any service.

Configuring the MySQL server selectively
After refactoring the code and adding a flag controlled by a variable, we are ready
to selectively configure the MySQL server. We have the mysql.server variable,
which takes the Boolean value of True/False. This variable could be used to decide
whether to skip server configurations, as follows:

#file: roles/mysql/tasks/main.yml
- include: configure.yml
 when: mysql.server

- include: service.yml
 when: mysql.server

Let's also add tasks to install the MySQL client package as well as the Python
bindings required by Ansible's MySQL module:

filename: roles/mysql/tasks/install_Debian.yml
 - name: install mysql client
 apt:
 name: "{{ mysql['pkg']['client'] }}"
 update_cache: yes

 - name: install mysql server
 apt:
 name: "{{ mysql['pkg']['server'] }}"
 update_cache: yes
 when: mysql.server

 - name: install mysql python binding
 apt:
 name: "{{ mysql['pkg']['python'] }}"

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[83]

Here, the package names come from the following variable hash:

mysql:
pkg:
 server: mysql-server
 client: mysql-client
 python: python-mysqldb

By default, the mysql.server parameter has been set to False. How do we enable
this only for the database servers? There are plenty of ways we can do so. We would
choose playbook variables this time, since we have one dedicated to DB servers.

Let's take a look at the following screenshot:

Conditional control structure in Jinja2
templates
Ansible uses Jinja2 as a template engine. Hence, it would be useful for us to
understand Jinja2 control structures in addition to the ones supported by Ansible
tasks. Jinja2's syntax encloses the control structures inside the {% %} blocks.
For conditional control, Jinja2 uses the familiar if statements, which have the
following syntax:

{% if condition %}
 do_some_thing
{% elif condition2 %}
 do_another_thing
{% else %}
 do_something_else
{% endif %}

www.it-ebooks.info

http://www.it-ebooks.info/

Controlling Execution Flow – Conditionals

[84]

Updating the MySQL template
The template that we created earlier to generate the my.cnf file assumes that all
the variables referred in it are defined somewhere. There is a chance that this is
not always the case, which could result in errors while running Ansible. Could
we selectively include configuration parameters in the my.cnf file? The answer is
yes. We could check whether a variable is defined and only then, we will add it to
the file, as follows:

#filename: roles/mysql/template/my.cnf.j2
[mysqld]
user = {{ mysql['config']['user'] | default("mysql") }}
{% if mysql.config.pid is defined %}
pid-file = {{ mysql['config']['pid'] }}
{% endif %}
{% if mysql.config.socket is defined %}
socket = {{ mysql['config']['socket'] }}
{% endif %}
{% if mysql.config.port is defined %}
port = {{ mysql['config']['port'] }}
{% endif %}
{% if mysql.config.datadir is defined %}
datadir = {{ mysql['config']['datadir'] }}
{% endif %}
{% if mysql.config.bind is defined %}
bind-address = {{ mysql['config']['bind'] }}
{% endif %}

Let's analyze the preceding code:

•	 Since we are setting the default value for the mysql['config']['user']
parameter, there is no need to check whether it's defined. It's already handled
gracefully.

•	 For all other parameters, we check whether the variable is defined using a
condition, such as if mysql.config.pid is defined. This would skip the
parameter if it's not defined rather than throwing an error.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[85]

Running a task only once
At times, a specific task in a role may need to be executed only once during a
playbook execution, even though the role is applied to many hosts. This could be
achieved with the run_once conditional:

name: initialize wordpress database
script: initialize_wp_database.sh
run_once: true

Since we are using the run_once option, the preceding task would run on the first
host in the inventory that the role is being applied to. All consequent hosts would
skip this task.

Executing roles conditionally
The Nginx role that we created earlier to set up web server supports only
Debian-based systems. Running this logic on other systems could lead to failure.
For example, the Nginx role uses the apt module to install packages, which would
not work on RedHat-based systems, which depend on the yum package manager.
This could be avoided by adding the when statement with a fact to selectively execute
based on an OS family. The following is the snippet from the www.yml playbook:

#filename: www.yml (snippet)
- hosts: www
 roles:
 - { role: nginx, when: ansible_os_family == 'Debian' }

Review questions
Do you think you've understood the chapter well enough? Try answering the
following questions to test your understanding:

1.	 What is the replacement for the if else statements in Ansible?
2.	 How can you selectively import platform-specific variables?
3.	 Why do Jinja2 templates use __ and __ to delimit control structures?
4.	 How would you skip running roles on incompatible platforms?

www.it-ebooks.info

http://www.it-ebooks.info/

Controlling Execution Flow – Conditionals

[86]

Summary
In this chapter, you learnt about how to control execution flow using the when
statements, conditional imports, selective includes, and so on. You also learnt how
to use variables and facts to selectively skip routines and execute platform-specific
subroutines. We refactored the MySQL role to start using dictionaries of variables to
conditionally configure the MySQL server and to use more intelligent templates with
prechecks for defined variables.

In the next chapter, we will begin exploring the second type of control structures,
that is. iterative control structures, where we will start looping arrays and hashes.

www.it-ebooks.info

http://www.it-ebooks.info/

[87]

Iterative Control
Structures – Loops

You learned about conditional controls in the previous chapter. Our journey into
Ansible's world of control structures continues with iterative controls. Often, we
need to create a list of directories, install a bunch of packages, or define and walk
over nested hashes or dictionaries. Traditional programming languages use the for
or while loops for iteration. Ansible replaces them with the with statements.

In this chapter, we are going to learn about:

•	 How to use iterative controls using the with statements
•	 How to loop arrays to create multiple objects at once
•	 How to define nested hashes and walk over them to create data-driven roles

The omnipotent with statement
Iterating plain lists, parsing dictionaries, looping a sequence of numbers, parsing
through a path and selectively copying files, or just picking up a random item from
a list could be achieved using the "Swiss knife" utility, with statement. The with
statements take the following form:

with_xxx

Here, the xxx parameter is the type of data that needs to be looped, for example,
items, dictionaries, and so on.

www.it-ebooks.info

http://www.it-ebooks.info/

Iterative Control Structures – Loops

[88]

The following table lists the types of data that the with statement can iterate:

Construct Data type Description
with_items Array This is used to loop array items. For

example, this is used to create a group
of users, directories, or to install a list of
packages.

with_nested Nested loops This is used to parse multidimensional
arrays. For example, to create a list of
MySQL users and grant them access to
a group of databases.

with_dict Hashes This is used to parse a dictionary of
key-value pairs and create virtual hosts.

with_fileglobs Files with pattern
match

This is used to parse a path and
copy only those files that match a
certain pattern.

with_together Sets This is used to join two arrays as a set
and to loop over it.

with_subelements Hash subelement This is used to parse a subelement of
a hash. For example, to walk over the
list of SSH keys and distribute them to
a user.

with_sequence Integer sequence This is used to loop a sequence of
numbers.

with_random_choice Random choice This is used to pick up items from the
array in a random order.

with_indexed_items Array with index This is an array with an index and
is useful when an index for items
is required.

Configuring WordPress requisites
While creating a role to install WordPress in Chapter 4, Bringing In Your Code –
Custom Commands and Scripts, we created tasks to download, extract, and copy the
WordPress application. However, that's not enough to launch WordPress, which has
the following prerequisites:

•	 A web server
•	 PHP bindings for a web server
•	 The MySQL database and MySQL users

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[89]

An Nginx web server and MySQL service have already been installed in our case.
We still need to install and configure PHP along with the MySQL database and a
user required for our WordPress application. To handle PHP requests, we choose to
implement the PHP5-FPM handler, which is an alternative to the traditional FastCGI
implementation.

The PHP5-FPM role
In PHP5-FPM, FPM stands for FastCGI Process Manager. PHP5-FPM comes with
advanced features over fastcgi, which are useful for managing high-traffic sites.
It is suitable for serving our fifanews site, which is expected to get a few million
hits a day. Following our design tenet of creating a modular code, we would keep
PHP functionality in its own role. Let's initialize the PHP5-FPM role using the
Ansible-Galaxy command, as follows:

$ ansible-galaxy init --init-path roles/ php5-fpm

Defining an array
PHP installation will involve the installation of multiple packages, including
php5-fpm, php5-mysql, and a few others. So far, we have been writing tasks
one at a time. For example, let's take a look at the following code snippet:

 - name: install php5-fpm
 apt: name: "php5-fpm"
 - name: install php5-mysql
 apt: name: "php5-mysql"

However, this could become repetitive when we want to install multiple packages,
also causing redundant code. Being committed to writing data-driven roles, we
would drive the installation of packages through a variable, which takes a list of
packages and then iterates the list. Let's begin defining the parameters required to
list the packages, as follows:

#filename: roles/php5-fpm/defaults/main.yml
#defaults file for php5-fpm
php5:
 packages:
 - php5-fpm
 - php5-common
 - php5-curl
 - php5-mysql
 - php5-cli
 - php5-gd

www.it-ebooks.info

http://www.it-ebooks.info/

Iterative Control Structures – Loops

[90]

 - php5-mcrypt
 - php5-suhosin
 - php5-memcache
 service:
 name: php5-fpm

Here is the analysis of the preceding code:

•	 The php5 variable is a variable dictionary, which would contain all the
parameters that we pass to the php5-fpm role.

•	 The php5.packages parameter is an array of packages, one defined on each
line in the code. This will be passed to a task that will iterate each item and
install it.

•	 The php5.service parameter defines the name of the service, which would
be referred to from the service task.

Looping an array
Let's now create tasks for the php5-fpm role. We need to install packages from the
array and then start the service. We will split the package's functionalities in to two
separate task files and call it from the main.yml file, as follows:

#filename: roles/php5-fpm/tasks/main.yml
tasks file for php5-fpm
- include_vars: "{{ ansible_os_family }}.yml"
 when: ansible_os_family != 'Debian'

- include: install.yml
- include: service.yml

#filename: roles/php5-fpm/tasks/install.yml
 - name: install php5-fpm and family
 apt:
 name: "{{ item }}"
 with_items: php5.packages
 notify:
 - restart php5-fpm service

#filename: roles/php5-fpm/tasks/service.yml
manage php5-fpm service
- name: start php5-fpm service
 service:
 name: "{{ php5['service']['name'] }}"
 state: started

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[91]

Along with tasks, the handler to restart the php5-fpm role can be written, as follows:

filename: roles/php5-fpm/handlers/main.yml
handlers file for php5-fpm
- name: restart php5-fpm service
 service: name="{{ php5['service']['name'] }}" state=restarted

Let's analyze the preceding code:

•	 Main: The main.yml file includes variables based on the ansible_os_family
fact for non-Debian systems. This is useful for overriding variables that are
platform-specific. After including the vars file, the main task goes on to
include the install.yml and service.yml files.

•	 Install: The install.yml file is where we iterate an array of packages
that were defined earlier. Since the file contains an array, we use the
with.items construct with the php5.packages variable and pass the
{{ item }} parameter as the name of the package to be installed. We
could have alternatively passed the array directly, as follows:
 with_items:
 - php5-fpm
 - php5-mysql

•	 Service and handler: The service.yml file and the handler main.yml file
manage the start and restart of the php5-fom service. It takes a dictionary
variable php5['service']['name'] to determine the service name.

Creating MySQL databases and user
accounts
WordPress is a content management system that requires a MySQL DB to be
available to store data, such as posts, users, and so on. Additionally, it also requires
a MySQL user with appropriate privileges to connect to the database from a
WordPress application. We get one admin user while installing MySQL, however, it's
a good practice to create an additional user account and grant privileges to the user
as and when required.

www.it-ebooks.info

http://www.it-ebooks.info/

Iterative Control Structures – Loops

[92]

Creating a hash
A hash, an abbreviation of hash table, is a dictionary of key-value pairs. It's a useful
data structure to create a multilevel variable, which can then be programmatically to
create multiple objects, each having their own values. We will define the databases
and users as dictionary items in the group_vars/all file, as follows:

#filename: group_vars/all
mysql_bind: "{{ ansible_eth0.ipv4.address }}"
mysql:
 databases:
 fifalive:
 state: present
 fifanews:
 state: present
 users:
 fifa:
 pass: supersecure1234
 host: '%'
 priv: '*.*:ALL'
 state: present

Here is the analysis of the preceding code:

•	 We defined this variable hash in the group_vars/all file instead of in the
role. This is because we would like to keep roles generic and shareable,
without adding data specific to our respective environments.

•	 We defined the databases and user configurations as multilevel dictionaries,
or hashes.

Nested hashes
This multilevel hash is explained through the following diagram:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[93]

The following is the description of how this nested hash is structured:

•	 A MySQL variable is a hash with two keys: databases and users.
For example:
mysql:
 databases: value
 users: value

•	 The values for each of these two keys are in turn hashes, or dictionaries of
information, about the databases and users that are to be created. For example:
databases:
 fifalive: value
 fifanews: value

•	 Each database in turn is a dictionary of keys and values. For example, for the
MySQL user fifalive, the key-value pairs are "state:present".

Iterating a hash
Creating databases and user accounts would typically require the creation of custom
scripts with templates, which would then be called using command modules.
Ansible instead comes with batteries, and staying true to this statement, it provides
us with ready-made modules to perform MySQL-related tasks, that is, the mysql_db
and mysql_user parameters. Using the with_dict statement, we will walk through
the dictionaries of databases and users that we defined earlier, as follows:

filename: roles/mysql/tasks/configure.yml
 - name: create mysql databases
 mysql_db:
 name: "{{ item.key }}"
 state: "{{ item.value.state }}"
 with_dict: "{{ mysql['databases'] }}"

 - name: create mysql users
 mysql_user:
 name: "{{ item.key }}"
 host: "{{ item.value.host }}"
 password: "{{ item.value.pass }}"
 priv: "{{ item.value.priv }}"
 state: "{{ item.value.state }}"
 with_dict: "{{ mysql['users'] }}"

www.it-ebooks.info

http://www.it-ebooks.info/

Iterative Control Structures – Loops

[94]

Here is the analysis of the preceding code:

•	 The mysql['databases'] and mysql['users'] parameters are dictionaries
that are passed to a task using the with_dict statements

•	 Each dictionary, or hash, has a key-value pair that is passed as the
{{ item.key }} and {{ item.value }} parameters

•	 The {{ item.value }} parameter is a dictionary. Each key in this dictionary
is then referred to as {{ item.value.<key> }}. For example, the
{{ item.value.state }} parameter

The following diagram explains how this nested hash is parsed:

Creating Nginx virtual hosts
After installing the php5-fpm manager and creating the MySQL databases and user
accounts, the last bit of configuration that is left is to create a virtual host with Nginx
to serve our WordPress application. The Nginx web server that we installed earlier
serves a simple HTML page and is not aware of the existence of the WordPress
application or how to serve it. Let's start by adding these configurations.

Defining the PHP site information
In addition to the fifanews.com site that we are setting up, we may also launch
a few more sites related to soccer in future. Hence, we need to have the ability
to programmatically add multiple sites with the same Nginx server. Creating a
dictionary to define site information and embedding it into a template sounds like a
good choice for this. Since site information is specific to us, we will add the variable
hash to the group_vars file, as follows:

#filename: group_vars/all
nginx:
 phpsites:
 fifanews:
 name: fifanews.com
 port: 8080
 doc_root: /var/www/fifanews

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[95]

We learned how to parse this dictionary from the Ansible task. Let's add a task that
will allow us to walk through this dictionary, pass the values to templates, and create
virtual host configurations:

#filename: roles/nginx/tasks/configure.yml
- name: create php virtual hosts
 template:
 src: php_vhost.j2
 dest: /etc/nginx/conf.d/{{ item.key }}.conf
 with_dict: "{{ nginx['phpsites'] }}"
 notify:
 - restart nginx service

Each item in this dictionary is passed to the template, in this case, to the
php_vhost.j2 parameter. This in turn reads the hash and creates a virtual host
template, which configures a PHP application, as follows:

#filename: roles/nginx/templates/php_vhost.j2
#{{ ansible_managed }}

server {
 listen {{ item.value.port }};

 location / {
 root {{ item.value.doc_root }};
 index index.php;
 }

 location ~ .php$ {
 fastcgi_split_path_info ^(.+\.php)(.*)$;
 fastcgi_pass backend;
 fastcgi_index index.php;
 fastcgi_param SCRIPT_FILENAME {{ item.value.doc_root
 }}$fastcgi_script_name;
 include fastcgi_params;
 }
}
upstream backend {
 server 127.0.0.1:9000;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Iterative Control Structures – Loops

[96]

Here is the analysis of the preceding code:

•	 The {{ ansible_managed }} parameter is a special variable that adds a
comment notifying the server that this file is being managed by Ansible, with
the path to this file in the Ansible repository, last modification time, and the
user who modified it.

•	 The template gets a dictionary item and parses its values since it's a nested
hash. This template has configuration for creating a php virtual hosts for
Nginx using dictionary values set with nginx.phpsites.

•	 Configuration parameters provided with the dictionary include doc root,
port, backend to use which make Nginx aware of how to handle incoming
PHP requests, which backend to use, which port to listen on, and so on.

Finally, we add the new role to the www.yaml file, as follows:

www.yml
roles:
 - { role: nginx, when: ansible_os_family == 'Debian' }
 - php5-fpm
 - wordpress

Run the playbook using the following command:

$ ansible-playbook -i customhosts site.yml

After the run is complete, it's time to test our work. Let's load the following URL in
the browser:

http://<web_server_ip>:8080

Congratulations!! We've successfully created a WordPress PHP application with the
Nginx web server and MySQL backend, fully configured. Now, we are ready to set
up our fifanews site:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[97]

www.it-ebooks.info

http://www.it-ebooks.info/

Iterative Control Structures – Loops

[98]

Review questions
Do you think you've understood this chapter well enough? Try answering the
following questions to test your understanding:

1.	 Which statement in Ansible replaces the for loop?
2.	 How is the with_____ statement used to iterate dictionaries?
3.	 How would you add a statement to a template that prints when, and by

whom, it was modified?
4.	 How would you print the values of a nested hash?

Summary
In this chapter, you learned how to create multiple objects iteratively. We started
with an overview of the omnipotent with statement and its various forms. Then, we
dove deeper into iterating the two most essential data structures, which are, arrays
and hashes. The php5-fpm role takes an array with a list of packages and creates
a task to install those in a loop. To create MySQL databases and users, we defined
variable dictionaries or hashes and iterated them. Finally, we added Nginx template
configurations to create multiple virtual hosts serving PHP applications by iterating
a nested dictionary.

In the next chapter, you will learn how to discover information about other nodes
using magic variables.

www.it-ebooks.info

http://www.it-ebooks.info/

[99]

Node Discovery
and Clustering

For most real-world scenarios, we would need to create a cluster of compute nodes
with the applications running on top, which are linked together. For example, the
WordPress site that we have been building requires web servers and databases
connected together.

Clustered infrastructure has a topology where one class of nodes should be able to
discover information about the different, or the same, class of servers. For example,
the WordPress application servers need to discover information about database
servers, and load balancers need to know about the IP address/hostname of each
web server that it's serving traffic to. This chapter focuses on what primitives Ansible
offers to group together nodes and discover the attributes of interconnected nodes.

In this chapter, we will learn about:

•	 Discovering information about other nodes in the cluster
•	 Generating configurations dynamically using the magic variables discovered
•	 Why and how to enable fact caching

www.it-ebooks.info

http://www.it-ebooks.info/

Node Discovery and Clustering

[100]

Node discovery with magic variables
We have looked at user-defined variables as well as system data, that is, facts. In
addition to these, there are a few variables that define the meta information about
the nodes, inventory, and plays, for example, which groups a node belongs to, what
groups are part of the inventory, which nodes belong to which group, and so on.
These variables, which are implicitly set, are called magic variables, and are very
useful for discovering nodes and topology information. The following table lists the
most useful magic variables, and their description:

Magic Variable Description
hostvars These are lookup variables or facts set on another host.
groups This is the list of groups in the inventory. This can be used

to walk over a group of nodes to discover its topology
information.

group_names This is the list of groups that the node belongs to.
inventory_hostname This is the hostname set in the inventory file. It can be

different to the ansible_hostname fact.
play_hosts This is the list of all the hosts that belong to the current play.

In addition to the preceding table, there are a few additional magic variables, for
example, the delegate_to, inventory_dir and inventory_file parameters,
however, these are not relevant to node discovery and are less frequently used.

We are now going to create a new role to serve as a load balancer, which relies on
this node discovery feature provided by the magic variables.

Creating the load balancer role
We created the Nginx and MySQL roles to serve the WordPress site. However, if we
have to build a scalable site, we also need to add a load balancer to the mix. This load
balancer will then act as an entry point for the incoming requests, and then spread the
traffic across the available web servers. Let's consider the following scenario, where
our fifanews site has become an instant hit. The traffic is growing exponentially, and
the single web server approach that we have been using is showing cracks. We need
to scale out horizontally and add more web servers. Once we start creating more web
servers, we also need to have some mechanism to balance traffic across those. We
have been tasked to create a haproxy role, which would discover all web servers in
our cluster automatically and add to its configurations.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[101]

The following diagram explains this scenario with haproxy as a frontend, balancing
the load across web servers in the backend. Haproxy is a widely used open source
TCP/HTTP load balancer. Let's take a look at the following diagram:

haproxy
haproxy.cfg

server www1 192.168.1.1:80 check
server www2 192.168.1.2:80 check
server www3 192.168.1.3:80 check

192.168.1.1 192.168.1.2 192.168.1.3

www1 www2 www3

In the next steps, we will not only create a haproxy module, but also have it
configured automatically with the IP addresses of all the web server nodes using
magic variables:

1.	 Let's start by creating the scaffolding required to write this role, using the
following command:
$ ansible-galaxy init --init-path roles/ mysql

The output will look as follows:
 haproxy was created successfully

2.	 We will now add some variables related to the haproxy role to the
variable defaults:

filename: roles/haproxy/defaults/main.yml
haproxy:
 config:
 cnfpath: /etc/haproxy/haproxy.cfg
 enabled: 1
 listen_address: 0.0.0.0
 listen_port: 8080
 service: haproxy
 pkg: haproxy

www.it-ebooks.info

http://www.it-ebooks.info/

Node Discovery and Clustering

[102]

Even though it's a good practice to add a parameter for
each configuration that haproxy supports, we will stick to a
subset of parameters while writing this role; this is specially
useful for node discovery.

3.	 Let's now create some tasks and handlers, which install, configure, and
manage the haproxy service on an Ubuntu host:

filename: roles/haproxy/tasks/main.yml
- include: install.yml
- include: configure.yml
- include: service.yml

filename: roles/haproxy/tasks/install.yml
 - name: install haproxy
 apt:
 name: "{{ haproxy['pkg'] }}"

filename: roles/haproxy/tasks/configure.yml
 - name: create haproxy config
 template: src="haproxy.cfg.j2" dest="{{
 haproxy['config']['cnfpath'] }}" mode=0644
 notify:
 - restart haproxy service

 - name: enable haproxy
 template: src="haproxy.default.j2"
 dest=/etc/default/haproxy mode=0644
 notify:
 - restart haproxy service

filename: roles/haproxy/tasks/service.yml
 - name: start haproxy server
 service:
 name: "{{ haproxy['service'] }}"
 state: started

filename: roles/haproxy/handlers/main.yml
- name: restart haproxy service
 service: name="{{ haproxy['service'] }}" state=restarted

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[103]

Here is the analysis of the preceding code:

•	 As per the best practices, we created separate task files for each phase: install,
configure, and service. We then called these from the main tasks file, that is,
the tasks/main.yml file.

•	 The configuration file for haproxy will be created in /etc/haproxy/haproxy.
cfg using a Jinja2 template. In addition to creating the configuration, we also
need to enable the haproxy service in the /etc/defaults/haproxy file.

•	 Install, service, and handlers are similar to the roles that we created earlier,
hence we will skip the description.

We have defined the usage of templates in the configure.yml file. Let's now create
the templates:

#filename: roles/haproxy/templates/haproxy.default
ENABLED="{{ haproxy['config']['enabled'] }}"

#filename: roles/haproxy/templates/haproxy.cfg.j2
global
 log 127.0.0.1 local0
 log 127.0.0.1 local1 notice
 maxconn 4096
 user haproxy
 group haproxy
 daemon

defaults
 log global
 mode http
 option httplog
 option dontlognull
 retries 3
 option redispatch
 maxconn 2000
 contimeout 5000
 clitimeout 50000
 srvtimeout 50000

listen fifanews {{ haproxy['config']['listen_address'] }}:{{
haproxy['config']['listen_port'] }}
 cookie SERVERID rewrite
 balance roundrobin
 {% for host in groups['www'] %}

www.it-ebooks.info

http://www.it-ebooks.info/

Node Discovery and Clustering

[104]

 server {{ hostvars[host]['ansible_hostname'] }} {{
 hostvars[host]['ansible_eth1']['ipv4']['address'] }}:{{
 hostvars[host]['nginx']['phpsites']['fifanews']['port'] }}
 cookie {{ hostvars[host]['inventory_hostname'] }} check
 {% endfor %}

The second template that we created at roles/haproxy/templates/haproxy.cfg.j2
is of particular interest to us pertaining to node discovery. The following diagram shows
the relevant section with the usage of magic variables marked:

Let's analyze this template snippet:

•	 We are using the magic variable groups to discover all hosts that belong to
the group www in the inventory, as follows:
{% for host in groups['www'] -%}

•	 For each discovered host, we fetch facts as well as user-defined variables
using the hostvars parameter, which is another magic variable. We are
looking up facts and user-defined variables, as well as another magic
variable, which is inventory_hostname, as follows:
{{ hostvars[host]['ansible_eth1']['ipv4']['address'] }}

{{ hostvars[host]['inventory_hostname'] }}
{{ hostvars[host]['nginx']['phpsites']['fifanews']['port']
}}

To apply this role to the load balancer host defined in the inventory, we need to
create a play, which should be part of the site.yml file, which is our main playbook:

#filename: lb.yml
- hosts: lb
 remote_user: vagrant

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[105]

 sudo: yes
 roles:
 - { role: haproxy, when: ansible_os_family == 'Debian' }

This is a site wide playbook
filename: site.yml
- include: db.yml
- include: www.yml
- include: lb.yml

Now, run the playbook using the following command:

$ ansible-playbook -i customhosts site.yml

The preceding run will install haproxy and create a configuration with all web
servers added to the haproxy.cfg file in the backends section. An example of the
haprxy.cfg file is as follows:

listen fifanews 0.0.0.0:8080
 cookie SERVERID rewrite
 balance roundrobin
 server vagrant 192.168.61.12:8080 cookie 192.168.61.12 check

Accessing facts for non-playbook hosts
In the earlier exercise, we launched the main playbook, which invokes all the
other playbooks to configure the entire infrastructure. At times, we may just want
to configure a portion of our infrastructure, in which case, we can just invoke the
individual playbooks, such as lb.yml, www.yml, or db.yml. Let's try running the
Ansible playbook just for the load balancers:

$ ansible-playbook -i customhosts lb.yml

Oops! It failed! Here is the snapshot of the snippet from the output:

www.it-ebooks.info

http://www.it-ebooks.info/

Node Discovery and Clustering

[106]

Ansible exits with an error as it was not able to find a variable from the host, which
is not part of the playbook anymore. Here is how Ansible behaves when it comes to
magic variables:

•	 Ansible starts to gather facts while it runs the code on a host. These facts are
then stored in the memory for the duration of the playbook run. This is the
default behavior, and can be turned off.

•	 For host B to discover variables from host A, Ansible should have
communicated with host A earlier in the playbook.

This behavior from Ansible can cause undesired results and can limit a host to
discover information about nodes that are only part of its own play.

Facts caching with Redis
Failure to discover facts from non-playbook hosts can be avoided by caching facts.
This feature was added in version 1.8 of Ansible and supports caching facts between
playbook runs in Redis, a key-value in the memory
data store. This requires two changes:

•	 Installing and starting the Redis service on the Ansible control node
•	 Configuring Ansible to send facts to the instance of Redis

Let's now install and start the Redis server using the following commands:

$ sudo apt-get install redis-server

$ sudo service redis-server start

$ apt-get install python-pip

$ pip install redis

This will install Redis on the Ubuntu host and start the service. If you have an rpm
package-based system, you can install it as follows:

$ sudo yum install redis

$ sudo yum install python-pip

$ sudo service start redis

$ sudo pip install redis

Before enabling facts caching, it's a good idea to first
check if you are running a version of Ansible equal to, or
greater, than 1.8. You can do so by running the command
$ ansible –version.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[107]

Now that we have started Redis, it's time to configure Ansible. Let's edit the
ansible.cfg file as follows:

filename: /etc/ansible/ansible.cfg
Comment following lines
gathering = smart
fact_caching = memory
Add following lines
gathering = smart
fact_caching = redis
fact_caching_timeout = 86400
fact_caching_connection = localhost:6379:0

Let's now validate this setup by running the playbook, which configures web servers:

$ ansible-playbook -i customhosts www.yml

$ redis-cli

$ keys *

Let's take a look at the following screenshot:

Now we will try running the load balancer playbook again using the following
command:

$ ansible-playbook -i customhosts lb.yml

This time it goes through successfully. It's able to discover facts for the web server,
which is not part of the play.

Caching facts in files
Even though using Redis is the recommended approach, it's possible to cache facts
in flat files as well. Ansible can write facts to files using the JSON format. To enable a
JSON file as a format, we just need to edit the ansible.cfg file as follows:

 # filename: /etc/ansible/ansible.cfg
 fact_caching = jsonfile
fact_caching_connection = /tmp/cache

www.it-ebooks.info

http://www.it-ebooks.info/

Node Discovery and Clustering

[108]

Ensure that the directory specified exists with the correct permissions:

$ mkdir /tmp/cache

$ chmod 777 /tmp/cache

After making these changes, all we have to do is run the playbook, and Ansible will
start writing facts to JSON files named after the hosts created under this directory.

Review questions
Do you think you've understood the chapter well enough? Try answering the
following questions to test your understanding:

1.	 Are magic variables different to facts? What are they used for?
2.	 Which magic variable would allow us to walk over a list of web servers and

enumerate an IP address for each?
3.	 Why is facts caching required? What are the different modes for

caching facts?
4.	 Will the inventory_hostname fact always be the same as the

ansible_hostname fact?

Summary
In this chapter, you learned how to discover information about other nodes in the
cluster to connect them together. We started with the introduction to magic variables
and looked at the most commonly used ones. We then started creating a role for
haproxy, which auto-discovers web servers and creates configurations dynamically.
Finally, we looked at the issue of accessing information about hosts not in the
playbook, and you learned how to solve it by enabling the caching of facts. Magic
variables are very powerful, especially while orchestrating your infrastructure with
Ansible, where discovering topology information automatically is very useful.

In the next chapter, you will learn how to securely pass data using vault, an
encrypted data store.

www.it-ebooks.info

http://www.it-ebooks.info/

[109]

Encrypting Data with Vault
Using variables, we saw how to separate data and code. Often, the data provided is
sensitive, for example, user passwords, data base credentials, API keys, and other
organization-specific information. Ansible-playbooks, being a source code, are most
commonly stored in version control repositories such as a git, which makes it even
more difficult to protect this sensitive information in a collaborative environment.
Starting with version 1.5, Ansible provides a solution called vault to store and retrieve
such sensitive information securely, using proven encryption technologies. The
objective of using vault is to encrypt data that can then be stored and shared freely
with a version control system, such as git, without the values being compromised.

In this chapter, we will learn about the following topics:

•	 Understanding the Ansible-vault
•	 Securing data using the Ansible-vault
•	 Encryption, decryption, and rekeying operations

Ansible-vault
Ansible provides a utility named Ansible-vault, which as the name suggests, lets
you manage data securely. The Ansible-vault utility can either let you create an
encrypted file by launching an editor interface, or encrypt an existing file. In either
case, it will ask for a vault password, which is then used to encrypt the data with
the AES cipher. The encrypted contents can be stored in a version control system
without being compromised. Since the AES is based on shared secret, the same
password needs to be provided for decryption too. To provide the password, there
are two options, while launching Ansible, run the --ask-vault-pass option to
prompt for the password, and the --vault-password-file option to provide the
path to the file that contains the password.

www.it-ebooks.info

http://www.it-ebooks.info/

Encrypting Data with Vault

[110]

Advanced Encryption Standard
Advanced Encryption Standard (AES) is an encryption standard based on the
Rijndael symmetric block cipher, named after, and developed by, two Belgian
cryptographers—Vincent Rijmen and Joan Daemen. Initially, established by (the
U.S.) National Institute of Standards and Technology (NIST) in 2001, AES is an
algorithm adopted by the U.S. government to share classified information, and is the
most popular symmetric-key cryptography algorithm. AES is also the first publicly
accessible open cypher approved by the National Security Agency (NSA).

Being an open and popular standard, Ansible uses the AES cypher with a key size of
256 bits to encrypt data with the vault.

What to encrypt with the vault?
Ansible-vault can encrypt any structured data. Since YAML itself is a structured
language, almost everything that you write for Ansible meets this criteria. The
following are the pointers on what can be encrypted with the vault:

•	 Most commonly, we encrypt variables, which can be as follows:
°° Variable files in roles, for example, vars and defaults
°° Inventory variables, for example, host_vars, group_vars
°° Variables files included with include_vars or vars_files
°° Variable files passed to the Ansible-playbook with the -e option, for

example, -e @vars.yml or -e @vars.json

•	 Since tasks and handlers are also JSON data, these can be encrypted with the
vault. However, this should be rarely practiced. It's recommended that you
encrypt variables and reference them in tasks and handlers instead.

The following are the pointers on what cannot be encrypted with the vault:

•	 Since the unit of encryption for the vault is a file, partial files or values cannot
be encrypted. You can encrypt the complete file or none of it.

•	 Files and templates cannot be encrypted as they may not be similar to JSON
or YML.

The following data are a good candidates for encryption:

•	 Credentials, for example, database passwords and application credentials
•	 API keys, for example, AWS access and secret keys
•	 SSL keys for web servers
•	 Private SSH keys for deployments

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[111]

Using the Ansible-vault
The following table lists all the subcommands that the Ansible-vault utility
comes with:

Subcommand Description
create This creates a encrypted file from scratch using the editor. This needs

the editor environment variable set before launching the command.
edit This edits the existing encrypted file with an editor, without

decrypting the contents.
encrypt This encrypts an existing file with structured data.
decrypt This decrypts the file. Use this with care and do not commit the

decrypted file to version control.
rekey This changes the key or password used to encrypt or decrypt.

Encrypting the data
Let's perform some operations using Ansible-vault. We will start by creating an
encrypted file. To create a new file from scratch, Ansible-vault uses the create
subcommand. Before using this subcommand, it is important to set an editor in the
environment, as follows:

setting up vi as editor

$ export EDITOR=vi

Generate a encrypted file

$ ansible-vault create aws_creds.yml

Vault password:

Confirm Vault password:

Launching this command opens up an editor specified with the editor environment
variable. The following is an example of the aws_creds.yml file that you may create
to store the AWS user credentials in the form of an access key and secret key. These
keys are then used to make API calls to the Amazon web services cloud platform.
Saving this file and exiting the editor will generate an encrypted file:

www.it-ebooks.info

http://www.it-ebooks.info/

Encrypting Data with Vault

[112]

You can check the type of file created and its contents by running following
commands:

Check file type and content

$ file aws_creds.yml

aws_creds.yml: ASCII text

$ cat aws_creds.yml

$ANSIBLE_VAULT;1.1;AES256

6461623666636237663036643562353833656539333133333166366363623763633531323
4313134

3337303865323239623436646630336239653864356561640a36396639313531666163656
2333932

6132393231323038343331373564643862303261363562396664623230643338333532656
6343333

3136646536316261300a61643864346365626363623731613635616364616131336533623
9653434

3662613531313834393936363535356337386530626636353238653762346362346437613
4353863

3764663863623130346134356434323234383735666231626235653765306635646535343
2396436

3133666431366130663065376535616161626665323231663765313235666134316239633
1353863

3435663237396366323037386631396138643566346365656137346162383065626163656
4313464

37383465353665623830623363353161363033613064343932663432653666633538

Updating the encrypted data
To update the AWS keys added to the encrypted file, you can later use
Ansible-vault's edit subcommand as follows:

$ ansible-vault edit aws_creds.yml

Vault password:

The edit command does the following operations:

1.	 Prompts for a password
2.	 Decrypts a file on the fly using the AES symmetric cypher
3.	 Opens the editor interface, which allows you to change the content of a file
4.	 Encrypts the file again after being saved

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[113]

There is another way to update the content of the file. You can decrypt the file
as follows:

$ ansible-vault decrypt aws_creds.yml

Vault password:

Decryption successful

Once updated, this file can then be encrypted again, as you learned earlier.

Rotating the encryption keys
As a good security practice, it's a good idea to change encryption keys used with
Ansible-vault often. When this happens, it's essential to rekey all the files encrypted
earlier using the vault. Ansible vault offers a rekey subcommand, which can be used
as follows:

$ ansible-vault rekey aws_creds.yml

Vault password:

New Vault password:

Confirm New Vault password:

Rekey successful

It asks for the current password, and then allows you to specify and confirm
your new password. Note that if you are managing this file with version control,
you would also need to commit the change. Even though the actual contents are
unchanged, rekeying the operation updates the resulting file that is created, which is
part of our repository.

Encrypting the database credentials
Earlier while creating database users, we provided the passwords as plain text in
group_vars. This can be a potential threat, especially when checked into a version
control repository. Let's encrypt it. We will use the encrypt subcommand as we
already have a variables file.

Since we are using the group_vars group to provide database credentials, we will
encrypt the group_vars/all file as follows:

$ ansible-vault encrypt group_vars/all

Vault password:

Confirm Vault password:

Encryption successful

www.it-ebooks.info

http://www.it-ebooks.info/

Encrypting Data with Vault

[114]

For encryption, Ansible-vault asks for a password or key to be entered by the user.
Using this key, the vault encrypts the data and replaces the file with the encrypted
content. The following diagram shows the plain text content on the left and the
equivalent encrypted content on the right for the group_vars/all file:

This file now can be safely checked into a version control system and shared.
However, the following are the caveats users should be aware of:

•	 Unlike plain text, the resulting file is an encrypted format. It's not possible
to get a different file format, for example, git diff, to compare the changes
while committing to version control.

•	 It's not possible to use grep, sed, or any text search or manipulation
programs on this file directly. The only way to do so is to decrypt it first, run
the text manipulation utilities, and encrypt it back.

Ensure that you use the same password for all the files that
you are going to decrypt with one Ansible-playbook run.
Ansible can take only one value for the password at a time,
and will fail if the files in the same playbook are encrypted
using different passwords.

Let's now run the Ansible playbook using the following command:

$ ansible-playbook -i customhosts site.yml

ERROR: A vault password must be specified to decrypt /vagrant/chap8/
group_vars/all

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[115]

It fails with an error! That's because we are providing the playbook with encrypted
data, without the key to decrypt it. The primary use for vault is to secure data
while it's in the Ansible repository. Ultimately, these values need to be decrypted
while running the playbook. The decryption password can be specified with the
--ask-vault-pass option, as follows:

$ ansible-playbook -i customhosts site.yml --ask-vault-pass

This will prompt for "Vault Password" and then continue running Ansible code
as usual.

Using a password file
Entering the password every time may not be ideal. Often at times you may also
want to automate the process of launching Ansible playbook runs, in which case,
an interactive way is not feasible. This can be avoided by storing the password in
a file and providing the file to the Ansible playbook run. The password should be
provided as a single line string in this file.

Let's create a password file and secure it with the correct permissions:

$ echo "password" > ~/.vault_pass

(replace password with your own secret)

$ chmod 600 ~/.vault_pass

When the vault password is stored as plain text, anyone who
has access to this file can decrypt the data. Make sure the
password file is secured with appropriate permissions, and is
not added to version control. If you decide to version control
it, use gpg or equivalent measures.

Now this file can be provided to the Ansible playbook, as follows:

$ ansible-playbook -i customhosts site.yml --vault-password-file
~/.vault_pass

www.it-ebooks.info

http://www.it-ebooks.info/

Encrypting Data with Vault

[116]

Adding the vault password file option to
the Ansible configuration
With version 1.7, it's also possible to add the vault_password_file option to the
ansible.cfg file in the defaults section.

Consider the following:

[defaults]
 vault_password_file = ~/.vault_pass

The preceding option gives you the freedom of not specifying the encryption
password or the password file every time. Let's take a look at the following
commands:

launch ansible playbook run with encrypted data

with vault_password_file option set in the config

$ ansible-playbook -i customhosts site.yml

$ ansible-vault encrypt roles/mysql/defaults/main.yml

Encryption successful

$ ansible-vault decrypt roles/mysql/defaults/main.yml

Decryption successful

Moreover, when starting with version 1.7, instead of storing a plain text password
in the file, a script can also be provided in the vault_password_file option. When
using the script, ensure that:

•	 The execute bit is enabled on the script
•	 Calling this script outputs a password on the standard output
•	 If the script prompts for user inputs, it can be sent to the standard error

Using encrypted data in templates
You learned earlier that since a template may not be a structured file such as YAML
or JSON, it cannot be encrypted. However, there is a way to add encrypted data
to the templates. Remember, templates are, after all, generated on the fly, and the
dynamic content actually comes from variables, which can be encrypted. Let's
discuss how to achieve this by adding SSL support for the Nginx web server.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[117]

Adding SSL support to Nginx
We have already set up an Nginx web server, now let's add SSL support to the
default site by following these steps:

1.	 We begin by adding the variables, as follows:
#file: roles/nginx/defaults/main.yml
nginx_ssl: true
nginx_port_ssl: 443
nginx_ssl_path: /etc/nginx/ssl
nginx_ssl_cert_file: nginx.crt
nginx_ssl_key_file: nginx.key

2.	 Let's also create self-signed SSL certificates:
$ openssl req -x509 -nodes -newkey rsa:2048 -keyout nginx.key -out
nginx.crt

The preceding command will generate two files, nginx.key and nginx.crt.
These are the files that we will have copied over to the web server.

3.	 Let's add the contents of these files to the variables, and create the
group_vars/www file:
file: group_vars/www

nginx_ssl_cert_content: |
 -----BEGIN CERTIFICATE-----
 -----END CERTIFICATE-----
nginx_ssl_key_content: |
 -----BEGIN PRIVATE KEY-----
 -----END PRIVATE KEY-----

In the preceding example, we are just adding placeholders that are to be
replaced with the actual contents for the key and certificate. These keys and
certificates should not be exposed in a version control system.

4.	 Let's encrypt this file using the vault:
$ ansible-vault encrypt group_vars/www

Encryption successful

Since we have already provided the path to the vault password in the
configuration, the Ansible-vault does not ask for the password.

www.it-ebooks.info

http://www.it-ebooks.info/

Encrypting Data with Vault

[118]

5.	 Let's now create the templates, which add these keys:
filename: roles/nginx/templates/nginx.crt.j2
{{ nginx_ssl_cert_content }}

filename: roles/nginx/templates/nginx.key.j2
{{ nginx_ssl_key_content }}

6.	 Also, let's add a virtual host config file to the SSL:
filename: roles/nginx/templates/nginx.key.j2
server {
 listen {{ nginx_port_ssl }};
 server_name {{ ansible_hostname }};
 ssl on;
 ssl_certificate {{ nginx_ssl_path }}/{{
 nginx_ssl_cert_file }};
 ssl_certificate_key {{ nginx_ssl_path }}/{{
 nginx_ssl_key_file }};

 location / {
 root {{ nginx_root }};
 index {{ nginx_index }};
 }
}

7.	 We also need to create a task file to configure the SSL site, which will create
the required directory, files, and configurations:

filename: roles/nginx/tasks/configure_ssl.yml
 - name: create ssl directory
 file: path="{{ nginx_ssl_path }}" state=directory
 owner=root group=root
 - name: add ssl key
 template: src=nginx.key.j2 dest="{{ nginx_ssl_path
 }}/nginx.key" mode=0644
 - name: add ssl cert
 template: src=nginx.crt.j2 dest="{{ nginx_ssl_path
 }}/nginx.crt" mode=0644
 - name: create ssl site configurations
 template: src=default_ssl.conf.j2 dest="{{ nginx_ssl_path
 }}/default_ssl.conf" mode=0644
 notify:
 - restart nginx service

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[119]

8.	 Finally, let's call this task selectively based on whether the nginx_ssl var
parameter is set to true:
filename: roles/nginx/tasks/main.yml
 - include: configure_ssl.yml
 when: nginx_ssl

9.	 Now, run the playbook as follows:
$ ansible-playbook -i customhosts site.yml

This should configure the default SSL site running at port 443 with self-signed
certificates. Now, you should be able to open the web server address with the https
secure protocol as follows:

Of course, it should show a warning as our certificate is self-signed and not provided
by a designated certification authority.

Review questions
Do you think you've understood the chapter well enough? Try answering the
following questions to test your understanding:

1.	 Why is there a need to encrypt the data provided to Ansible playbooks?
2.	 What is AES, and what is a symmetric-key cipher?
3.	 What are the two methods to update a file previously encrypted with

the vault?
4.	 What is the parameter that is added to the Ansible configuration file to make

it aware of the location of the vault password file?

www.it-ebooks.info

http://www.it-ebooks.info/

Encrypting Data with Vault

[120]

Summary
In this chapter, you learned how to secure the data passed to the playbooks using
Ansible-vault. We started with the need to encrypt data, how the vault works, and
which cipher it uses. We then started to dive into the Ansible-vault utility and basic
operations such as creating encrypted files, decrypting, rekeying, and so on. You
also learned how to encrypt existing files by running Ansible-vault on the vars file
holding the database credentials. Finally, we added SSL support to Nginx and you
learned how to securely store private keys and certificates for the web server using
the vault and copying them using templates. Note that Ansible vault offers a way to
provide data to Ansible modules securely. In addition to using the vault, additional
system security measures are advised that do not come under the purview of this text.

After learning about vault, in the next chapter, we will start learning about the
various approaches to managing multiple environments such as development,
staging, and production with Ansible. These environments typically map to the
software development workflow.

www.it-ebooks.info

http://www.it-ebooks.info/

[121]

Managing Environments
Most organizations start with a single environment while building their
infrastructures. However, as the complexity grows, it is imperative that we have a
workflow that involves writing code and testing it in development environments,
followed by an intensive QA cycle to make sure that the code is tested for stability in
the staging, or preproduction, environment before we finally release it to production.
In order to simulate a real-world behavior, these environments have to run identical
stacks of applications, but most likely at different scales. For example, staging will
be a small-scale replica of production with fewer servers, and most commonly,
development environments would run on individual workstations in virtualized
environments. Even though all these environments run an identical application
stack, they have to be isolated from each other and must have environment-specific
configurations, explained as follows:

•	 The applications in the dev group should not be pointing at databases in
staging and vice versa

•	 A production environment may have its own package repository
•	 A staging environment may run a web server on port 8080, whereas all other

environments run it on port 80

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Environments

[122]

With roles, we could create a modular code to configure these environments
identically for all environments. Another important property of Ansible is its
ability to separate code from data. Using these two in combination, we could model
the infrastructure in a way that we would be able to create environment-specific
configurations without having to modify the roles. We would be able to create
them just by providing the variables from different places. Let's take a look at the
following screenshot:

stage proddev

The preceding diagram portrays three different environments, which are dev, stage,
and production, within the same organization. All three run the same application
stack, which involves a load balancer, web servers, and database servers. However,
the two things to note here are that:

•	 Each environment has a different scale based on which host can be
configured to run one or more roles (for example, db plus www).

•	 Each environment is isolated from the other. A web server in a production
environment will not connect to a database in staging, and vice versa.

In this chapter, we are going to cover the following topics:

•	 Managing multiple environments with Ansible
•	 Separating inventory files per environment
•	 Using the group_vars and host_vars groups to specify

environment-specific configurations

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[123]

Approaches for managing environments
You have already learned about the need to create different environments with identical
roles, but with different data. At the time of writing this, more than one approach exists
for managing such multiple environment scenarios with Ansible. We are going to
discuss two approaches here, and you can use your best judgment to pick either of the
two or create your own approach. There is no explicit way to create an environment,
but the following are the built-in features of Ansible, which could come in handy:

•	 The use of an inventory to group together hosts that belong to one
environment and isolate them from the hosts in other environments

•	 The use of inventory variables, such as the group_vars and host_vars
groups, to provide environment-specific variables

Before we proceed, it would be useful to review the inventory groups, variables, and
precedence rules that are applicable to them.

The inventory groups and variables
You have already learned learned that the Ansible inventory follows an INI style
configuration, where hosts are grouped together with group tags enclosed in square
brackets, as shown in the following figure:

The inventory variables can then be specified so that they match these group names
using group_vars or match specific hosts in the host_vars files. Apart from these
group names, there is a provision to specify default variables for the group_vars and
host_vars files using a file named "all", which gives rise to the following structure:

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Environments

[124]

In such a case, if you specify the same variable in the all and webserver files, the one
variable that is more specific will take precedence. What this means is, if you define a
variable in 'all' and define it again in the 'webserver' group under group_vars, the
value of the parameters will be set to the one defined in 'webserver', which is more
specific. This is the behavior that we exploit in the approaches, which are as follows.

Approach 1 – using nested groups in an
inventory
In addition to being able to create groups using the INI style, Ansible supports
nested groups, where a complete group can be part of another parent group. The first
approach is based on this feature and is discussed step by step, as follows:

1.	 Create an environment directory to store environment-specific inventory
files. It's a good idea to name them after the environments. Add hosts that
are specific to that environment and group them. A group can be of any
criteria, such as a role, location, server racks, and so on. For example, create a
'webservers' group to add all the Apache web servers, or a group called 'in'
to add all the hosts belonging to that location.

2.	 Add a parent group named after the environment name, such as, production,
development, staging, and so on, and include all other groups that belong to
that environment as a child. Each of these in turn include a group of hosts,
for example:
[dev:children]
 webservers
 databases

3.	 Now, create the common/default group variables in the group_vars/all file.
These variables then can be overridden from the environment-specific files.

4.	 To specify the environment-specific variables, create the group_vars/
{{env}} file, which is shown as follows:
group_vars
 |_ all
 |_ dev
 |_ stage

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[125]

This is also going to override the variables in the all group. The following diagram
shows the file structure created with this approach:

Once this has been created, it's just a matter of calling the environment-specific
inventory with the ansible-playbook command run.

For example, let's take a look at the following command:

$ ansible-playbook -i environments/dev site.yml

Approach 2 – using environment-specific
inventory variables
The second approach does not require nested groups and relies on the following two
features of Ansible:

•	 The -i option of Ansible-playbook also accepts a directory that can contain
one or more inventory files

•	 The host and group variables can be relative to the inventory files in
addition to the group_vars and host_vars groups in the root of the
Ansible repository

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Environments

[126]

This approach will create completely isolated variable files for each environment.
The file structure we created is portrayed in the following diagram:

The following is the step-by-step method used for this approach:

1.	 Create an environment directory in the root of the Ansible repository. Under
this, create one directory per environment.

2.	 Each of the environment directories contain two things:
°° A host's inventory.
°° Inventory variables, for example, group_vars and host_vars. To

make environment-specific changes, group_vars is relevant to us.

3.	 Each environment contains its own group_vars directory, which in
turn can have one or more files, including the all file as default. No two
environments share these variables with others.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[127]

Caution: In addition to the environment-specific group_vars
group, it's possible to use the group_vars file residing
on top of the Ansible-playbook repository. However, it's
recommended that you don't use it with this approach, as
environment-specific changes are overridden by the values in
the playbook group_vars if they are same.

With this approach, the playbook can be launched specific to an environment as:

$ ansible-playbook -i environments/dev site.py

Here, environments/dev is a directory.

Creating a development environment
After learning about how to manage environments, let's try it out by refactoring our
existing code and create a dev environment. To test it, let's create a variable called
"env_name" and change the default page of Nginx to dynamically use this variable
and print the environment name. We will then try to override this variable from the
environment. Let's take a look at the following steps:

1.	 Let's begin by setting the default variable:
#group_vars/all
env_name: default

2.	 Then, change the Nginx task to use a template instead of a static file, so make
the following modification in the roles/nginx/tasks/configure.yml file:
 - name: create home page for default site
 copy: src=index.html
 dest=/usr/share/nginx/html/index.html

Modify it into the following code:
 - name: create home page for default site
 template:
 src: index.html.j2
 dest: /usr/share/nginx/html/index.html

3.	 Let's now try running the playbook without creating the environment:
$ ansible-playbook -i customhosts www.yml

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Environments

[128]

4.	 After the run is complete, let's check the default web page:

5.	 It prints the value of the variable that we set from the group_vars/all file,
the default value.

6.	 Let's now create a file that would allow us to manage a dev environment.
Since we are going to use the same set of hosts, we could just convert our
existing inventory to dev and add a parent group after the name of the
environment:
$ mkdir environments/

$ mv customhosts environments/dev

 [edit environments/dev]

7.	 Add all the groups to the dev environment as:
[dev:children]
db
www
lb

The inventory file is shown as follows and we've to make the
following changes:

1.	 Now, let's create a group_vars file for the dev environment and
override the environment name:

 #file: environments/dev
env_name: dev

2.	 This time, we are going to run the playbook as:
$ ansible-playbook -i environments/dev www.yml

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[129]

We'll see the following screenshot as the output:

Review questions
Do you think you've understood this chapter well enough? Try answering the
following questions to test your understanding:

1.	 How do you specify multiple host inventories for the same environment?
2.	 If you define a variable in the environments/dev/group_vars/all file and

the same in the group_vars/all file, which one will take precedence?
3.	 How do you create a group of groups in a host inventory file?

Summary
In this chapter, you learned how to create multiple environments that map to the
software development workflow or the phases. We started with a brief overview of
inventory groups and inventory variables, specifically, the group_vars file. This was
followed by the two approaches used to manage environments. Finally, we refactored
our code, went on to create the dev environment, and tested it by overriding one
variable from the environment. In the next chapter, you are going to learn about
infrastructure orchestration and how Ansible shines when it comes to orchestrating
complex infrastructure workflows, zero downtime deployments, and so on.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[131]

Orchestrating Infrastructure
with Ansible

Orchestration can mean different things at different times when used in different
scenarios. The following are some of the orchestration scenarios described:

•	 Running ad hoc commands in parallel on a group of hosts, for example,
using a for loop to walk over a group of web servers to restart the Apache
service. This is the crudest form of orchestration.

•	 Invoking an orchestration engine to launch another configuration
management tool to enforce correct ordering.

•	 Configuring a multitier application infrastructure in a certain order with
the ability to have fine-grained control over each step, and the flexibility to
move back and forth while configuring multiple components. For example,
installing the database, setting up the web server, coming back to the
database, creating a schema, going to web servers to start services, and more.

Most real-world scenarios are similar to the last scenario, which involve a multitier
application stacks and more than one environment, where it's important to bring
up and update nodes in a certain order, and in a coordinated way. It's also useful
to actually test that the application is up and running before moving on to the next.
The workflow to set up the stack for the first time versus pushing updates can be
different. There can be times when you would not want to update all the servers at
once, but do them in batches so that downtime is avoided.

www.it-ebooks.info

http://www.it-ebooks.info/

Orchestrating Infrastructure with Ansible

[132]

In this chapter, we will cover the following topics:

•	 Orchestration scenarios
•	 Using Ansible as an infrastructure orchestrating engine
•	 Implementing rolling updates
•	 Using tags, limits and patterns
•	 Building tests into playbooks

Ansible as an orchestrator
When it comes to orchestration of any sort, Ansible really shines over other tools.
Of course, as the creators of Ansible would say, it's more than a configuration
management tool, which is true. Ansible can find a place for itself in any of the
orchestration scenarios discussed earlier. It was designed to manage complex
multitier deployments. Even if you have your infrastructure being automated with
other configuration management tools, you can consider Ansible to orchestrate those.

Let's discuss the specific features that Ansible ships with, which are useful for
orchestration.

Multiple playbooks and ordering
Unlike most other configuration management systems, Ansible supports running
different playbooks at different times to configure or manage the same infrastructure.
You can create one playbook to set up the application stack for the first time, and
another to push updates over time in a certain manner. Another property of the
playbook is that it can contain more than one play, which allows the separation of
groups of hosts for each tier in the application stack, and configures them at the same
time.

Pre-tasks and post-tasks
We have used pre-tasks and post-tasks earlier, which are very relevant while
orchestrating, as these allow us to execute a task or run validations before and after
running a play. Let's use the example of updating web servers that are registered
with the load balancer. Using pre-tasks, a web server can be taken out of a load
balancer, then the role is applied to the web servers to push updates, followed by
post-tasks which register the web server back to the load balancer. Moreover, if these
servers are being monitored by Nagios, alerts can be disabled during the update
process and automatically enabled again using pre-tasks and post-tasks. This can
avoid the noise that the monitoring tool may generate in the form of alerts.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[133]

Delegation
If you would like tasks to be selectively run on a certain class of hosts, especially the
ones outside the current play, the delegation feature of Ansible can come in handy.
This is relevant to the scenarios discussed previously and is commonly used with
pre-tasks and post-tasks. For example, before updating a web server, it needs to
be deregistered from the load balancer. Now, this task should be run on the load
balancer, which is not part of the play. This dilemma can be solved by using the
delegation feature. With pre-tasks, a script can be launched on the load balancer
using the delegate_to keyword, which does the deregistering part as follows:

- name: deregister web server from lb
 shell: < script to run on lb host >
 delegate_to: lbIf there areis more than one load balancers,
 anan inventory group can be iterated over as, follows:

- name: deregister web server from lb
 shell: < script to run on lb host >
 delegate_to: "{{ item }}"
 with_items: groups.lb

Rolling updates
This is also called batch updates or zero-downtime updates. Let's assume that we
have 100 web servers that need to be updated. If we define these in an inventory
and launch a playbook against them, Ansible will start updating all the hosts in
parallel. This can also cause downtime. To avoid complete downtime and have a
seamless update, it would make sense to update them in batches, for example, 20 at
a time. While running a playbook, batch size can be mentioned by using the serial
keyword in the play. Let's take a look at the following code snippet:

- hosts: www
 remote_user: vagrant
 sudo: yes
 serial: 20

Tests
While orchestrating, it's not only essential to configure the applications in order, but
also to ensure that they are actually started, and functioning as expected. Ansible
modules, such as wait_for and uri, help you build that testing into the playbooks,
for example:

- name: wait for mysql to be up
 wait_for: host=db.example.org port=3106 state=started

www.it-ebooks.info

http://www.it-ebooks.info/

Orchestrating Infrastructure with Ansible

[134]

- name: check if a uri returns content
 uri: url=http://{{ inventory_hostname }}/api

 register: apicheck

The wait_for module can be additionally used to test the existence of a file. It's also
useful when you would like to wait until a service is available before proceeding.

Tags
Ansible plays map roles to specific hosts. While the plays are run, the entire logic that
is called from the main task is executed. While orchestrating, we may need to just
run a part of the tasks based on the phases that we want to bring the infrastructure
in. One example is a zookeeper cluster, where it's important to bring up all the nodes
in the cluster at the same time, or in a gap of a few seconds. Ansible can orchestrate
this easily with a two-phase execution. In the first phase, you can install and
configure the application on all nodes, but not start it. The second phase involves
starting the application on all nodes almost simultaneously. This can be achieved by
tagging individual tasks, for example, configure, install, service, and more.

For example, let's take a look at the following screenshot:

While running a playbook, all tasks with a specific tag can be called using –-tags
as follows:

$ Ansible-playbook -i customhosts site.yml –-tags install

Tags can not only be applied to tasks, but also to the roles, as follows:

{ role: nginx, when: Ansible_os_family == 'Debian', tags: 'www' }

If a specific task needs to be executed always, even if filtered with a tag, use a special
tag called always. This will make the task execute unless an overriding option, such
as --skip-tags always is used.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[135]

Patterns and limits
Limits can be used to run tasks on a subset of hosts, which are filtered by patterns.
For example, the following code would run tasks only on hosts that are part of the
db group:

$ Ansible-playbook -i customhosts site.yml --limit db

Patterns usually contain a group of hosts to include or exclude. A combination of
more than one pattern can be specified as follows:

$ Ansible-playbook -i customhosts site.yml --limit db,lb

Having a colon as separator can be used to filter hosts further. The following command
would run tasks on all hosts except for the ones that belong to the groups www and db:

$ Ansible-playbook -i customhosts site.yml --limit 'all:!www:!db'

Note that this usually needs to be enclosed in quotes. In this pattern, we used the all
group, which matches all hosts in the inventory, and can be replaced with *. That
was followed by ! to exclude hosts in the db group. The output of this command is
as follows, which shows that plays by the name db and www were skipped as no hosts
matched due to the filter we used previously:

Let's now see these orchestration features in action. We will begin by tagging the role
and do the multiphase execution followed by writing a new playbook to manage
updates to the WordPress application.

www.it-ebooks.info

http://www.it-ebooks.info/

Orchestrating Infrastructure with Ansible

[136]

Tagging the roles
Let's now start tagging the roles we created earlier. We will create the following tags
that map to the phases the applications are managed in:

•	 Install
•	 Configure
•	 Start

Here is an example of adding tags to the haproxy role. Tagging other roles is
excluded from the text to avoid redundancy. We can either add tags to the tasks
inside the role or tag the complete roles in a playbook. Let's begin by tagging tasks:

filename: roles/haproxy/tasks/install.yml
 - name: install haproxy
 apt:
 name: "{{ haproxy['pkg'] }}"
 tags:
 - install

filename: roles/haproxy/tasks/configure.yml
 - name: create haproxy config
 template: src="haproxy.cfg.j2" dest="{{
 haproxy['config']['cnfpath'] }}" mode=0644
 notify:
 - restart haproxy service
 tags:
 - configure

 - name: enable haproxy
 template: src="haproxy.default.j2" dest=/and
 more/default/haproxy mode=0644
 notify:
 - restart haproxy service
 tags:
 - configure

filename: roles/haproxy/tasks/service.yml
 - name: start haproxy server
 service:
 name: "{{ haproxy['service'] }}"
 state: started
 tags:
 - start

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[137]

After tagging tasks in a role, we will additionally tag the roles in the playbooks too,
as follows:

filename: db.yml
 roles:
- { role: mysql, tags: 'mysql' }

#filename: www.yml
 roles:
 - { role: nginx, when: Ansible_os_family == 'Debian', tags: [
 'www', 'nginx'] }
 - { role: php5-fpm, tags: ['www', 'php5-fpm'] }
 - { role: wordpress, tags: ['www', 'wordpress'] }

#filename: lb.yml
 roles:
- { role: haproxy, when: Ansible_os_family == 'Debian', tags:
 'haproxy' }

Once applied, the tags for our main playbook can be listed as follows:

$ Ansible-playbook -i customhosts site.yml --list-tags

#Output:

playbook: site.yml

 play #1 (db): TAGS: []

 TASK TAGS: [configure, install, mysql, start]

 play #2 (www): TAGS: []

 TASK TAGS: [configure, install, nginx, php5-fpm, ssl, start,
wordpress, www]

 play #3 (lb): TAGS: []

 TASK TAGS: [configure, haproxy, install, start]

Using the combination of tags and limits gives us a fine-grained control over what
gets executed in a playbook run, for example:

Run install tasks for haproxy,

$ Ansible-playbook -i customhosts site.yml --tags=install --limit lb

www.it-ebooks.info

http://www.it-ebooks.info/

Orchestrating Infrastructure with Ansible

[138]

Install and configure all but web servers

$ Ansible-playbook -i customhosts site.yml --tags=install,configure
--limit 'all:!www'

Run all tasks with tag nginx

$ Ansible-playbook -i customhosts site.yml --tags=nginx

Creating an orchestration playbook for
WordPress
We have a site-wide playbook, that is, the site.yml file that serves us to install and
configure the complete WordPress stack. For updating the application with zero
downtime and deploying new revisions, the site.yml file is not the ideal playbook
though. We would want to follow a workflow that would involve the following steps:

1.	 Update the web servers one at a time. This will avoid any downtime.
2.	 Before updating, deregister the web server from the haproxy load balancer.

This will stop the traffic to the web server in order to avoid downtime.
3.	 Run roles related to the WordPress application, that is, Nginx, php5-fpm,

and WordPress.
4.	 Ensure that the web server is running and is listening to port 80.
5.	 Register the server back on haproxy and start sending the traffic again.

Let's create a playbook by the name update.yml, which does the orchestration just as
explained earlier and uses most of the features discussed previously in this chapter.
Here is the playbook:

Playbook for updating web server in batches
filename: update_www.yml
- hosts: www
 remote_user: vagrant
 sudo: yes
 serial: 1
 pre_tasks:
 - name: deregister web server from load balancer
 shell: echo "disable server fifanews/{{ Ansible_hostname }}" |
 socat stdio /var/lib/haproxystats
 delegate_to: "{{ item }}"
 with_items: groups.lb

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[139]

 roles:
 - { role: nginx, when: Ansible_os_family == 'Debian' }
 - php5-fpm
 - wordpress
 post_tasks:
 - name: wait for web server to come up
 wait_for: host={{ inventory_hostname }} port=80 state=started
 - name: register webserver from load balancer
 shell: echo "enable server fifanews/{{ Ansible_hostname }}" |
 socat stdio /var/lib/haproxystats
 delegate_to: "{{ item }}"
 with_items: groups.lb

Let's analyze this code:

•	 The playbook contains just one play, which runs on the hosts that belong to
the www group in inventory.

•	 The serial keyword specifies the batch size, and allows rolling updates with
zero downtime. In our case, since we have fewer hosts, we chose one web
server to be updated at a time.

•	 Before applying the role, the host is deregistered from the load balancer
using the pre-tasks section ,which runs a shell command with socat. This is
run on all load balancers using the delegate keyword. Socat is a Unix utility
similar to and more at (nc) but has a richer feature set.

•	 After deregistering the host, roles are applied to it; this will update the
configurations for the web server or deploy new code.

•	 Once updated, the post-tasks kick in, which first wait until the web server is
up and listening to port 80, and only after its ready, then it registers it back to
the load balancer.

Review questions
Do you think you've understood the chapter well enough? Try answering the
following questions to test your understanding:

1.	 Is it possible to use Ansible to orchestrate another configuration
management tool?

2.	 How can you achieve zero downtime while deploying applications
with Ansible?

3.	 What does the --limit command do to Ansible playbook?

www.it-ebooks.info

www group in
http://www.it-ebooks.info/

Orchestrating Infrastructure with Ansible

[140]

4.	 How would you run a subset of tasks for a given role in a playbook?
5.	 What is the purpose of using pre-tasks and post-tasks?
6.	 What modules can be used to run tests from playbooks?
7.	 Why is the always tag special?

Summary
We started this chapter by discussing what orchestration is, what different
orchestration scenarios are, and how Ansible can fit in. You learned about Ansible's set
of rich features in the context or orchestration. This includes multi-playbook support,
pre-tasks and post-tasks, tags and limits, running tests, and a lot more. We went on
to tag the roles we created earlier and learned how to control what portion of code
runs on which machines using a combination of tags, patterns, and limits. Finally, we
created a new playbook to orchestrate the workflow to update web servers, which
involves zero-downtime deployment, delegation, pre-tasks and post-tasks, and tests.
You also learned that Ansible can be a good fit in any orchestration scenario.

This brings us to the end of this book. Before we conclude, on behalf of the
reviewers, editors, contributors, and rest of the publishing team, I would like to
thank you for considering this book as a companion in your journey towards being
an Ansible practitioner.

We hope that by now you have become comfortable with the various primitives
that Ansible offers to automate common infrastructure tasks, create dynamic
roles, manage multitier application configurations, zero-downtime deployments,
orchestrate complex infrastructure, and more. We hope that you will be able to apply
the knowledge acquired in this book to create effective Ansible playbooks.

www.it-ebooks.info

http://www.it-ebooks.info/

[141]

References
For more information regarding Ansible, refer to the following URLs:

•	 The Ansible documentation: http://docs.ansible.com/
•	 The Jinja2 template documentation: http://jinja.pocoo.org/docs/dev/
•	 Ansible Example Playbooks: https://github.com/ansible/ansible-

examples

•	 Ansible MySQL Roles by Benno Joy and Jeff Geerling:
°° https://github.com/bennojoy/mysql

°° https://github.com/geerlingguy/ansible-role-mysql

•	 Ansible Nginx Role by Benno Joy and DAUPHANT Julien:
https://github.com/jdauphant/ansible-role-nginx

•	 Multistage Environments with Ansible: http://rosstuck.com/
multistage-environments-with-ansible/

•	 Ansible project's Google group thread on how to create Ansible
environments: https://groups.google.com/forum/#!topic/ansible-
project/jd3cuR7rqCE

•	 Caching Facts in Ansible by Jan-Piet Mens: http://jpmens.
net/2015/01/29/caching-facts-in-ansible/

•	 Orchestration, You keep Using that Word by Michael DeHaan:
http://www.ansible.com/blog/orchestration-you-keep-using-that-
word

www.it-ebooks.info

http://docs.ansible.com/
http://jinja.pocoo.org/docs/dev/
https://github.com/ansible/ansible-examples
https://github.com/ansible/ansible-examples
https://github.com/bennojoy/mysql
https://github.com/geerlingguy/ansible-role-mysql
https://github.com/jdauphant/ansible-role-nginx
http://rosstuck.com/multistage-environments-with-ansible/
http://rosstuck.com/multistage-environments-with-ansible/
https://groups.google.com/forum/#!topic/ansible-project/jd3cuR7rqCE
https://groups.google.com/forum/#!topic/ansible-project/jd3cuR7rqCE
http://jpmens.net/2015/01/29/caching-facts-in-ansible/
http://jpmens.net/2015/01/29/caching-facts-in-ansible/
http://www.ansible.com/blog/orchestration-you-keep-using-that-word
http://www.ansible.com/blog/orchestration-you-keep-using-that-word
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[143]

Index
A
actions

automating, with handlers 32, 33
Advanced Encryption Standard (AES) 110
Ansible

about 9-11
as orchestrator 132
documentation, URL 17
roles, URL 48
vault password file option, adding

to configuration 116
Ansible-Galaxy

scaffolding, creating for roles 48, 49
Ansible-vault

about 109
Advanced Encryption Standard (AES) 110
database credentials, encrypting 115
data, encrypting 111
encrypted data, updating 112
encryption keys, rotating 113
encryption, options 110
subcommands 111
using 111

array
defining 89
looping 90, 91

B
base role

code, refactoring 28
creating 27

batch updates 133

C
code

and data, separating 38-40
command modules

about 66
command 67
raw 66, 67
script 68, 69
shell 67, 68

conditional control
about 78
in Jinja2 templates 83
when statements 78, 79

D
database credentials

encrypting 113, 114
DB servers

MySQL role, adding 57
dev environment

creating 127, 128

E
encrypted data

using, in templates 116
environments

dev environment, creating 127, 128
environment-specific inventory

variables, using 125-127
inventory groups 123
managing, approaches 123
nested groups, using in inventory 124, 125
variables 123, 124

www.it-ebooks.info

http://www.it-ebooks.info/

[144]

events
automating, with handlers 32, 33

F
facts

about 41, 79, 80
accessing, for non-playbook hosts 105-107
caching, in files 107, 108

FastCGI Process Manager (FPM) 89

G
git 109

H
handlers

used, for automating actions 32, 33
used, for automating events 32, 33

hash
creating 92
iterating 93, 94
nested hashes 92, 93

Htop 12

I
idempotence

about 18
of command modules, controlling 71

include statements 24

J
Jinja2 templates

about 40
conditional control 83
formation 40
MySQL template, updating 84

L
limits 135
load balancer role

creating 100-105

M
magic variables

about 100
group_names 100
groups 100
hostvars 100
inventory_hostname 100
play_hosts 100

metadata
adding, to role 49, 50

modules
about 17
and idempotence 18

MySQL databases
creating 91

MySQL role
about 48
adding, to DB servers 57
hashes, merging 81
metadata, adding 49, 50
multilevel variable dictionaries 80
refactoring 80
scaffolding creating, Ansible-Galaxy

used 48, 49
server, configuring 82
variables, using in handlers 50, 51
variables, using in tasks 50, 51

MySQL template
updating 84

N
nested playbook 25
nesting 24, 25
Nginx

configurations, templating 44-47
PHP site information, defining 94-96
SSL support, adding 117-119
virtual hosts, creating 94

Nginx role
creating 29
dependencies, adding 30
files, managing for 30, 31

non-playbook hosts
facts, accessing for 105-107

www.it-ebooks.info

http://www.it-ebooks.info/

[145]

O
orchestration

about 132
delegation 133
limits 135
multiple playbooks and ordering 132
patterns 135
pre-tasks 132
post-tasks 132
tags 134
tests 133
updates, rolling 133

orchestration playbook
creating, for WordPress 138, 139

P
parameterized include 26
password file

using 115
patterns 135
PHP5-FPM role

about 89
array, defining 89
array, looping 90, 91

playbook
about 12, 13
hosts inventory 14, 15
patterns 15
post-task 34
pre-task 34
running 18-20
running, with roles 34, 35
tasks 16
variables 55, 56

plays
about 11
parts 13

R
raw, command module 66, 67
roles

about 21
directory layout 22-24
executing, conditionally 85

naming 22
tagging 136, 137
used, for running playbooks 34, 35

S
script, command module 68, 69
shell module

about 67
used, for extracting WordPress 72, 73

site-wide playbook 24
SSL support

adding, to Nginx 117-119
static content explosion 38

T
tasks

about 16
creating 52-54
modules 17
running once 85

templates
encrypted data, using 116

U
user accounts

creating 91

V
variables

about 41, 42
creating 51, 52
defining 43
defining, ways 43
playbooks 55, 56
precedence 58-60
usage, best practices 61, 62
user-defined variables 43
using, in handlers 50, 51
using, in tasks 50, 51

vault
about 109
password file option, adding to Ansible

configuration 116

www.it-ebooks.info

http://www.it-ebooks.info/

[146]

W
when statements

about 78, 79
fact-based selection 79

with statement 87, 88
WordPress

application, deploying 69, 70
command modules, idempotence

controlling 71, 72
configuring 73-75
extracting, with shell module 72, 73
installing 70, 71
installing, URL 70
orchestration playbook, creating 138, 139
requisites, configuring 88
variables registered 72

www playbook
creating 26
custom role paths 27
roles, parameterizing 27

Y
YAML 12

Z
zero downtime updates 133

www.it-ebooks.info

http://www.it-ebooks.info/

Thank you for buying
Ansible Playbook Essentials

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.it-ebooks.info

www.packtpub.com
http://www.it-ebooks.info/

Ansible Configuration
Management
ISBN: 978-1-78328-081-0 Paperback: 92 pages

Leverage the power of Ansible to quickly configure
your Linux infrastructure with ease

1.	 Starts with the most simple usage of Ansible
and builds on that.

2.	 Shows how to use Ansible to configure your
Linux machines.

3.	 Teaches how to extend Ansible to add features
you need.

4.	 Explains techniques for using Ansible in large,
complex environments.

Learning Ansible
ISBN: 978-1-78355-063-0 Paperback: 308 pages

Use Ansible to configure your systems, deploy
software, and orchestrate advanced IT tasks

1.	 Use Ansible to automate your infrastructure
effectively, with minimal effort.

2.	 Customize and consolidate your configuration
management tools with the secure and
highly-reliable features of Ansible.

3.	 Unleash the abilities of Ansible and extend the
functionality of your mainframe system through
the use of powerful, real-world examples.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Development
Environments with Vagrant
Second Edition
ISBN: 978-1-78439-702-9 Paperback: 156 pages

Leverage the power of Vagrant to create and manage
virtual development environments with Puppet,
Chef, and VirtualBox

1.	 Get your projects up and running quickly
and effortlessly by simulating complicated
environments that can be easily shared with
colleagues.

2.	 Provision virtual machines using Puppet,
Ansible, and Chef.

3.	 A practical, hands-on guide that helps you
learn how to create powerful and flexible
virtual development environments.

Vagrant Virtual Development
Environment Cookbook
ISBN: 978-1-78439-374-8 Paperback: 250 pages

Over 35 hands-on recipes to help you master Vagrant,
and create and manage virtual computational
environments

1.	 Configure and deploy software to Vagrant
machines with scripts and configuration
management tools.

2.	 Manage and share Vagrant development
environments with cloud.

3.	 Packed with practical real-life examples to
improve existing working systems.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover
	Copyright
	Credits
	About the Author
	Acknowledgments
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Setting Up the
Learning Environment
	Chapter 1: Blueprinting Your Infrastructure
	Getting introduced to Ansible
	Plays
	YAML – the playbook language

	Our first playbook
	Creating a host inventory
	Patterns
	Tasks
	Modules

	Running the playbook

	Review questions
	Summary

	Chapter 2: Going Modular with
Ansible Roles
	Understanding roles
	Naming roles
	The directory layout for roles
	Creating a site-wide playbook, nesting, and using include statements
	Creating the www playbook
	The default and custom role paths
	Parameterizing the roles

	Creating a base role
	Refactoring our code – creating a base role

	Creating an Nginx role
	Adding role dependencies
	Managing files for Nginx

	Automating events and actions with handlers
	Adding pre-tasks and post-tasks to playbooks
	Running playbooks with roles
	Review questions
	Summary

	Chapter 3: Separating Code and
Data – Variables, Facts,
and Templates
	Static content explosion
	Separating code and data
	Jinja2 templates
	The template formation

	Facts and variables
	Automatic variables – facts
	User-defined variables
	Where to define a variable
	How to define a variable

	Templating the Nginx configurations
	Adding another layer – the MySQL role
	Creating the scaffolding for the roles with
Ansible-Galaxy
	Adding metadata to the role
	Using variables in tasks and handlers
	Creating variables
	Creating tasks

	Using variables in playbooks
	Applying a MySQL role to the DB servers

	Variable precedence
	The best practices for variable usage
	Review questions
	Summary

	Chapter 4: Bringing In Your
Code – Custom
Commands and Scripts
	The command modules
	Using the raw module
	Using the command module
	Using the shell module
	Using the script module

	Deploying a WordPress application – a hands-on approach
	Installing WordPress
	Controlling the idempotence of command modules
	The registered variables
	Extracting WordPress with a shell module

	Configuring WordPress

	Review questions
	Summary

	Chapter 5: Controlling Execution
Flow – Conditionals
	The conditional control structure
	The when statements
	Fact-based selection

	Refactoring the MySQL role
	Multilevel variable dictionaries
	Merging hashes

	Configuring the MySQL server selectively

	Conditional control structure in Jinja2 templates
	Updating the MySQL template

	Running a task only once
	Executing roles conditionally
	Review questions
	Summary

	Chapter 6: Iterative Control
Structures – Loops
	The omnipotent with statement
	Configuring WordPress requisites
	The PHP5-FPM role
	Defining an array
	Looping an array

	Creating MySQL databases and user accounts
	Creating a hash
	Nested hashes

	Iterating a hash

	Creating Nginx virtual hosts
	Defining the PHP site information

	Review questions
	Summary

	Chapter 7: Node Discovery
and Clustering
	Node discovery with magic variables
	Creating the load balancer role
	Accessing facts for non-playbook hosts
	Facts caching with Redis
	Caching facts in files

	Review questions
	Summary

	Chapter 8: Encrypting Data with Vault
	The Ansible-vault
	Advanced Encryption Standard
	What to encrypt with the vault?

	Using the Ansible-vault
	Encrypting the data
	Updating the encrypted data
	Rotating the encryption keys

	Encrypting the database credentials
	Using a password file
	Adding the vault password file option to the Ansible configuration
	Using encrypted data in templates
	Adding SSL support to Nginx

	Review questions
	Summary

	Chapter 9: Managing Environments
	Approaches for managing environments
	The inventory groups and variables
	Approach 1 – using nested groups in an inventory
	Approach 2 – using environment-specific inventory variables

	Creating a development environment
	Review questions
	Summary

	Chapter 10: Orchestrating Infrastructure with Ansible
	Ansible as an orchestrator
	Multiple playbooks and ordering
	Pre-tasks and post-tasks
	Delegation
	Rolling updates
	Tests
	Tags
	Patterns and limits

	Tagging the roles
	Creating an orchestration playbook for WordPress
	Review questions
	Summary

	References
	Index

