
www.it-ebooks.info

http://www.it-ebooks.info/

Ansible Configuration
Management
Second Edition

Leverage the power of Ansible to manage your
infrastructure efficiently

Daniel Hall

BIRMINGHAM - MUMBAI

www.it-ebooks.info

http://www.it-ebooks.info/

Ansible Configuration Management
Second Edition

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book
is sold without warranty, either express or implied. Neither the author nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: November 2013

Second edition: April 2015

Production reference: 1220415

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78528-230-0

www.packtpub.com

www.it-ebooks.info

www.packtpub.com
http://www.it-ebooks.info/

Credits

Author
Daniel Hall

Reviewers
Maykel Moya

Fernando F. Rodrigues

Patrik Uytterhoeven

Commissioning Editor
Ashwin Nair

Acquisition Editor
Reshma Raman

Content Development Editor
Rahul Nair

Technical Editor
Manali Gonsalves

Copy Editor
Laxmi Subramanian

Project Coordinator
Judie Jose

Proofreaders
Paul Hindle

Clyde Jenkins

Indexer
Monica Ajmera Mehta

Production Coordinator
Nilesh R. Mohite

Cover Work
Nilesh R. Mohite

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author

Daniel Hall started as a systems administrator at RMIT University after
completing his bachelor's in computer science in 2009. After spending 5 years
improving deployment processes at realestate.com.au, he became the sole
Systems Engineer at Melbourne lighting startup LIFX. Like many system
administrators, he is constantly trying to make his job easier, and has been using
Ansible to this effect. Daniel also wrote the first edition of this book.

I would like to thank my partner, Eliza, for her continued support
while writing this book. I would also like to thank my reviewers for
their insightful corrections. Finally, I would like to thank everybody
at Packt for giving me this opportunity to follow up on the first
edition of my book.

www.it-ebooks.info

realestate.com.au
http://www.it-ebooks.info/

About the Reviewers

Maykel Moya has been working in Systems and Network Administration since
1999. Previously, he was at two of the largest ISPs in his hometown of Cuba, where
he managed HA clusters, SAN, AAA systems, WAN, and Cisco routers. He entered
the GNU/Linux landscape through RedHat, but today his main experience lies in
Debian/Ubuntu systems. He identifies with the Free Software philosophy.

Convinced through personal experience that human intervention in computer
operations doesn't scale and is error-prone, he is constantly seeking ways to let
software offload the tedious and repetitive tasks from people. With a background
in Puppet, he looked for alternatives and discovered Ansible in its early days. Since
then he has been contributing to it.

He is currently employed by ShuttleCloud Corp., a company specialized in cloud
data migration at scale. Here, he works as a Site Reliability Engineer, ensuring that
the machine fleet is always available, runs reliably, and manages resources in an
optimal manner. Ansible is one of the many technologies he uses to accomplish this
on a daily basis.

Fernando F. Rodrigues is an IT professional with more than 10 years of
experience in systems administration, especially with Linux and VMware. As a
system administrator, he has always focused on programming and has experience
in working on projects from the government sector to financial institutions. He
is a technology enthusiast, and his areas of interest include cloud computing,
virtualization, infrastructure automation, and Linux administration.

He is also the technical reviewer of the books VMware ESXi Cookbook and Learning
Ansible, both by Packt Publishing.

www.it-ebooks.info

http://www.it-ebooks.info/

Patrik Uytterhoeven has over 16 years of experience in IT. Most of this time was
spent on HP Unix and Red Hat Linux. In late 2012, he joined Open-Future, a leading
open source integrator and the first Zabbix reseller and training partner in Belgium.

When Patrik joined Open-Future, he gained the opportunity to certify himself
as a Zabbix-certified trainer. Since then, he has provided training and public
demonstrations not only in Belgium but also around the world, in countries such as
the Netherlands, Germany, Canada, and Ireland.

Because Patrik also has a deep interest in configuration management, he wrote some
Ansible roles for Red Hat 6.x and 7.x to deploy and update Zabbix. These roles, and
some others, can be found in the Ansible Galaxy at https://galaxy.ansible.com/
list#/users/1375.

Patrik is also a technical reviewer of Learning Ansible and the author of the Zabbix
cookbook. Both the books are published by Packt Publishing.

www.it-ebooks.info

http://www.it-ebooks.info/

www.PacktPub.com

Support files, eBooks, discount offers,
and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.it-ebooks.info

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[i]

Table of Contents
Preface	 v
Chapter 1: Getting Started with Ansible	 1

Hardware and software required	 1
Installation methods	 2

Installing from your distribution	 3
Installing from pip	 3
Installing from the source code	 4

Setting up Ansible	 4
Setting it up on Windows	 7

First steps with Ansible	 10
Module help	 15
Summary	 15

Chapter 2: Simple Playbooks	 17
The target section	 18
The variable section	 19
The task section	 21
The handlers section	 22
The playbook modules	 25

The template module	 25
The set_fact module	 28
The pause module	 30
The wait_for module	 31
The assemble module	 32
The add_host module	 33
The group_by module	 34
The slurp module	 35

Windows playbook modules	 36

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[ii]

Cloud Infrastructure modules	 37
The AWS modules	 37

Summary	 39
Chapter 3: Advanced Playbooks	 41

Running operations in parallel	 41
Looping	 43
Conditional execution	 44
Task delegation	 46
Extra variables	 47

The hostvars variable	 47
The groups variable	 48
The group_names variable	 49
The inventory_hostname variable	 50
The inventory_hostname_short variable	 51
The inventory_dir variable	 51
The inventory_file variable	 51

Finding files with variables	 51
Environment variables	 52
External data lookups	 53
Storing results	 55
Processing data	 56
Debugging playbooks	 57

The debug module	 57
The verbose mode	 58
The check mode	 58
The pause module	 59

Summary	 59
Chapter 4: Larger Projects	 61

Includes	 61
Task includes	 62
Handler includes	 63
Playbook includes	 65

Roles	 66
Role metadata	 69
Role defaults	 70
Speeding things up	 70

Provisioning	 70
Tags	 71
Ansible's pull mode	 74

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[iii]

Storing secrets	 76
Summary	 77

Chapter 5: Custom Modules	 79
Writing a module in Bash	 80
Using a custom module	 83
Writing modules in Python	 84
External inventories	 88
Extending Ansible	 91

Connection plugins	 92
Lookup plugins	 92
Filter plugins	 93
Callback plugins	 95

Summary	 97
Index	 99

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[v]

Preface
Since CFEngine was first created by Mark Burgess in 1993, configuration
management tools have been constantly evolving. Followed by the emergence
of more modern tools such as Puppet and Chef, there are now a large number of
choices available to a system administrator.

Ansible is one of the newer tools to arrive into the configuration management space.
Where other tools have focused on completeness and configurability, Ansible has
bucked the trend and, instead, focused on simplicity and ease of use.

In this book, we aim to show you how to use Ansible from the humble beginnings
of its CLI tool, to writing playbooks, and then managing large and complex
environments. Finally, we teach you how to build your own modules and extend
Ansible by writing plugins that add new features.

What this book covers
Chapter 1, Getting Started with Ansible, teaches you the basics of Ansible, how to install
it on Windows and Linux, how to build an inventory, how to use modules, and, most
importantly, how to get help.

Chapter 2, Simple Playbooks, teaches you how to combine multiple modules to create
Ansible playbooks to manage your hosts, it also covers a few useful modules.

Chapter 3, Advanced Playbooks, delves deeper into Ansible's scripting language
and teaches you more complex language constructs; here we also explain how
to debug playbooks.

Chapter 4, Larger Projects, teaches you the techniques to scale Ansible's configurations
to large deployments using many complicated systems, including how to manage
various secrets you may use to provision your systems.

Chapter 5, Custom Modules, teaches you how to expand Ansible beyond its current
capabilities by writing both modules and plugins.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[vi]

What you need for this book
To use this book, you will need at least the following:

•	 A text editor
•	 A machine with the Linux operating system
•	 Python 2.6.x or Python 2.7.x

However, to use Ansible to its full effect, you should have several Linux machines
available to be managed. You can use a virtualization platform to simulate many
hosts, if required. To use the Windows modules, you will need both a Windows
machine to be managed and a Linux machine to be the controller.

Who this book is for
This book is intended for people who want to understand the basics of how Ansible
works. It is expected that you have rudimentary knowledge of how to set up and
configure Linux machines. In parts of the book, we cover the configuration files of
BIND, MySQL, and other Linux daemons; a working knowledge of these would be
helpful, but is certainly not required.

Conventions
In this book, you will find a number of styles of text that distinguish among different
kinds of information. Here are some examples of these styles, and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"This is done in a similar way using the vars_files directive."

A block of code is set as follows:

[group]
machine1
machine2
machine3

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[vii]

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

tasks:
 - name: install apache
 action: yum name=httpd state=installed

 - name: configure apache
 copy: src=files/httpd.conf dest=/etc/httpd/conf/httpd.conf

Any command-line input or output is written as follows:

ansible machinename -u root -k -m ping

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "clicking
the Next button moves you to the next screen".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

www.it-ebooks.info

www.packtpub.com/authors
http://www.it-ebooks.info/

Preface

[viii]

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save
other readers from frustration and help us improve subsequent versions of this book.
If you find any errata, please report them by visiting http://www.packtpub.com/
submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

www.it-ebooks.info

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support
http://www.it-ebooks.info/

[1]

Getting Started with Ansible
Ansible is profoundly different from other configuration management tools
available today. It has been designed to make configuration easy in almost every
way, from its simple English configuration syntax to its ease of setup. You'll find that
Ansible allows you to stop writing custom configuration and deployment scripts and
lets you simply get on with your job.

Ansible only needs to be installed on the machines that you use to manage your
infrastructure. It does not need a client to be installed on the managed machine,
nor does it need any server infrastructure to be set up before you can use it. You
should even be able to use it merely minutes after it is installed, as we will show
you in this chapter.

The following are the topics covered in this chapter:

•	 Installing Ansible
•	 Configuring Ansible
•	 Using Ansible from the command line
•	 Using Ansible to manage Windows machines
•	 How to get help

Hardware and software required
You will be using Ansible from the command line on one machine, which we will call
the controller machine, and use it to configure another machine, which we will call
the managed machine. Ansible currently only supports a Linux or OS X controller
machine; however, the managed machine can be Linux, OS X, other Unix-like
machines or Windows. Ansible does not place many requirements on the controller
machine and even less on the managed machine.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Ansible

[2]

The requirements for the controller machine are as follows:

•	 Python 2.6 or higher
•	 paramiko
•	 PyYAML
•	 Jinja2
•	 httplib2
•	 Unix-based OS

The managed machine needs Python 2.4 or higher and simplejson; however, if your
Python is 2.5 or higher, you only need Python. Managed Windows machines will
need Windows remoting turned on, and a version of Windows PowerShell greater
than 3.0. While Windows machines do have more requirements, all the tools are
freely available and the Ansible project even includes the script to help you easily
set up the dependencies.

Installation methods
If you want to use Ansible to manage a set of existing machines or infrastructure,
you will likely want to use whatever package manager is included on those systems.
This means that you will get updates for Ansible as your distribution updates it,
which may lag several versions behind other methods. However, it means that you
will be running a version that has been tested to work on the system you are using.

If you run an existing infrastructure, but need a newer version of Ansible, you can
install Ansible via pip. Pip is a tool used to manage packages of Python software and
libraries. Ansible releases are pushed to pip as soon as they are released, so if you are
up to date with pip, you should always be running the latest version.

If you imagine yourself developing lots of modules and possibly contributing back to
Ansible, you should be running a version installed from source code. As you will be
running the latest and least-tested version of Ansible, you may experience a hiccup
or two.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[3]

Installing from your distribution
Most modern distributions include a package manager that automatically manages
package dependencies and updates for you. This makes installing Ansible via your
package manager by far the easiest way to get started with Ansible; usually it takes
only a single command. It will also be updated as you update your machine, though
it may be a version or two behind. The following are the commands to install Ansible
on the most common distributions. If you are using something different, refer to the
user guide of your package or your distribution's package lists:

•	 Fedora, RHEL, CentOS, and compatible:
$ yum install ansible

•	 Ubuntu, Debian, and compatible:
$ apt-get install ansible

Note that RHEL and CentOS require the EPEL repository to be installed.
Details on EPEL, including how to install it can be found at
https://fedoraproject.org/wiki/EPEL.
If you are on Ubuntu and wish to use the latest release instead of the
one provided by your operating system, you can use the Ubuntu PPA
provided by Ansible. Details on setting this up can be found at
https://launchpad.net/~ansible/+archive/ubuntu/ansible.

Installing from pip
Pip, like a distribution's package manager, will handle finding, installing, and
updating the packages you ask for and its dependencies. This makes installing
Ansible via pip as easy as installing from your package manager. It should be noted,
however, that it will not be updated with your operating system. Additionally,
updating your operating system may break your Ansible installation; however, this
is unlikely. If you are a Python user, you might want to install Ansible in an isolated
environment (virtual environment): This is not supported as Ansible tries to install
its modules to the system. You should install Ansible system-wide using pip.

The following is the command to install Ansible via pip:

$ pip install ansible

www.it-ebooks.info

https://fedoraproject.org/wiki/EPEL
https://launchpad.net/~ansible/+archive/ubuntu/ansible
http://www.it-ebooks.info/

Getting Started with Ansible

[4]

Installing from the source code
Installing from the source code is a great way to get the latest version, but it may
not be tested as correctly as the released versions. You also will need to take care of
updating to newer versions yourself and making sure that Ansible will continue to
work with your operating system updates. To clone the git repository and install it,
run the following commands. You may need root access to your system to do this:

$ git clone git://github.com/ansible/ansible.git

$ cd ansible

$ sudo make install

Downloading the example code
You can download the example code files for all
Packt books you have purchased from your account
at http://www.packtpub.com. If you purchased
this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the
files e-mailed directly to you.

Setting up Ansible
Ansible needs to be able to get an inventory of the machines that you want to configure
in order to manage them. This can be done in many ways due to inventory plug-ins.
Several different inventory plug-ins are included with the base install. We will go over
these later in the book. For now, we will cover the simple host's file inventory.

The default Ansible inventory file is named hosts and is placed at /etc/ansible. It is
formatted like an INI file. Group names are enclosed in square braces, and everything
underneath it, down to the next group heading, gets assigned to that group. Machines
can be in many groups at one time. Groups are used to allow you to configure many
machines at once. You can use a group instead of a hostname as a host pattern in later
examples, and Ansible will run the module on the entire group at once.

In the following example, we have three machines in a group named webservers,
namely site01, site02, and site01-dr. We also have a production group that
consists of site01, site02, db01, and bastion.

[webservers]

site01

site02

site01-dr

www.it-ebooks.info

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.it-ebooks.info/

Chapter 1

[5]

[production]

site01

site02

db01

bastion

Once you have placed your hosts in the Ansible inventory, you can start running
commands against them. Ansible includes a simple module called ping that lets you
test connectivity between yourself and the host. Let's use Ansible from the command
line against one of our machines to confirm that we can configure them.

Ansible was designed to be simple, and one of the ways the developers have done
this is by using SSH to connect to the managed machines. It then sends the code over
the SSH connection and executes it. This means that you don't need to have Ansible
installed on the managed machine. It also means that Ansible uses the same channels
that you are already using to administer the machine. This makes is easier to setup,
because in most cases there will be no setup required and no ports to open in a firewall.

First, we check connectivity to our server to be configured using the Ansible ping
module. This module simply connects to the following server:

$ ansible site01 -u root -k -m ping

This should ask for the SSH password and then produce a result that looks like
the following:

site01 | success >> {

 "changed": false,

 "ping": "pong"

}

If you have an SSH key set up for the remote system, you will be able to leave off the
-k argument to skip the prompt and use the keys. You can also configure Ansible to
use a particular username all the time by either configuring it in the inventory on a
per host basis or in the global Ansible configuration.

To set the username globally, edit /etc/ansible/ansible.cfg and change the line
that sets remote_user in the [defaults] section. You can also change remote_port
to change the default port that Ansible will SSH to. This will change the default
settings for all the machines, but they can be overridden in the inventory file on a per
server or per group basis.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Ansible

[6]

To set the username in the inventory file, simply append ansible_ssh_user to the
line in the inventory. For example, the following code section shows an inventory
where the site01 host uses the username root and the site02 host uses the
username daniel. There are also other variables you can use. The ansible_ssh_
host variable allows you to set a different hostname, and the ansible_ssh_port
variable allows you to set a different port, which is demonstrated on the site01-dr
host. Finally the db01 host uses the username fred and also sets a private key using
ansible_ssh_private_key_file.

[webservers] #1

site01 ansible_ssh_user=root #2

site02 ansible_ssh_user=daniel #3

site01-dr ansible_ssh_host=site01.dr ansible_ssh_port=65422 #4

[production] #5

site01 #6

site02 #7

db01 ansible_ssh_user=fred
ansible_ssh_private_key_file=/home/fred/.ssh.id_rsa #8

bastion #9

If you aren't comfortable with giving Ansible direct access to the root account on
the managed machines, or your machine does not allow SSH access to the root
account (such as Ubuntu's default configuration), you can configure Ansible to
obtain root access using sudo. Using Ansible with sudo means that you can enforce
auditing the same way you would otherwise. Configuring Ansible to use sudo is as
simple as it is to configure the port, except that it requires sudo to be configured on
the managed machine.

The first step is to add a line to the /etc/sudoers file; on the managed node,
this may already be set up if you choose to use your own account. You can use a
password with sudo, or you can use a passwordless sudo. If you decide to use a
password, you will need to use the -k argument to Ansible, or set the ask_sudo_
pass value to true in /etc/ansible/ansible.cfg. To make Ansible use sudo, add
--sudo to the command line like this:

ansible site01 -s -m command -a 'id -a'

If this works, it should return something similar to:

site01 | success | rc=0 >>

uid=0(root) gid=0(root) groups=0(root)
context=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[7]

Setting it up on Windows
Ansible recently added the ability to manage Windows machines. Now, you can
use Ansible to easily manage Windows machines the same way you manage your
Linux machines.

This uses the Windows PowerShell Remoting tools in the same way that SSH is used
on a Linux machine to execute modules remotely. Several new modules have been
added that explicitly support Windows, but some existing modules have also been
given the ability to work with Windows-managed machines.

To get started with managing your Windows machine, you do have to perform a
little bit of complex setup. You need to follow these steps:

1.	 Create some Windows machines in your inventory
2.	 Install Python-winrm to allow Ansible to connect to the Windows machines
3.	 Upgrade to PowerShell 3.0+ to support Windows modules
4.	 Enable Windows remoting so that Ansible can connect

Windows machines are created the same way as all the other machines that you have
in your inventory. They are differentiated by the value of the ansible_connection
variable. When ansible_connection is set to winrm, it will try to connect via winrm
to Windows PowerShell on the remote machine. Ansible also uses the ansible_
ssh_user, ansible_ssh_pass, and ansible_ssh_port values like it would on
your other machine. Despite having the name ssh in them, they are used to provide
the port and credentials that will be used to connect to the Windows PowerShell
Remoting service. Here is what an example Windows machine might look like:

[windows]

dc.ad.example.com

web01.ad.example.com

web02.ad.example.com

[windows:vars]

ansible_connection=winrm

ansible_ssh_user=daniel

ansible_ssh_pass=s3cr3t

ansible_ssh_port=5986

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Ansible

[8]

For security reasons, you probably will not want to store the password in the
inventory file. You can make Ansible prompt for the password the same way we
showed previously for Unix systems by simply leaving off the ansible_ssh_user
and ansible_ssh_pass variables and instead using the -k and -u arguments to
Ansible if you wish. You might also choose to store them in an Ansible vault, which
will be covered later in the book.

After you have created the inventory, you need to install the winrm Python library
on the controller machine. This library will give Ansible the ability to connect to the
Windows Remote Management service and configure a remote Windows system.

At the moment, this library is fairly experimental, and its connection to Ansible isn't
quite perfect, so you have to install the particular version that matches the version of
Ansible you are using. With the release of Ansible 1.8, this should sort things out a
little bit. Most distributions do not have a packaged library yet, so you will probably
want to install it via pip. As root, you need to run:

$ pip install https://github.com/diyan/pywinrm/archive/
df049454a9309280866e0156805ccda12d71c93a.zip

However, for newer versions, you should simply be able to run:

pip install http://github.com/diyan/pywinrm/archive/master.zip

This will install the particular version of winrm that works with Ansible 1.7. For
other newer versions of Ansible, you may need a different version, and eventually
the winrm Python library should be packaged up by different distributions. Your
machine will now be able to connect to and manage Windows machines with Ansible.

Next you have to perform a few setup steps on the machine you are going to manage.
The first of these is to make sure that you have PowerShell 3.0 or later installed. You
can check what version you have installed with the following command:

$PSVersionTable.PSVersion.Major

If the value you get back is not 3 or higher than 3, then you will need to upgrade
your version of PowerShell. You can choose to do this manually by downloading and
installing the latest Windows Management Framework for your system, or you can
use a script provided by the Ansible project. To save space, we will be explaining the
scripted installation here; the manual installation is left as an exercise for the reader.

Invoke-WebRequest
https://raw.githubusercontent.com/ansible/ansible/release1.7.0/examples/
scripts/upgrade_to_ps3.ps1 -OutFile upgrade_to_ps3.ps1

.\upgrade_to_ps3.ps1

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[9]

The first command downloads the upgrade script from the Ansible project repository
on GitHub and saves it to disk. The second command will detect your operating
system to download the correct version of the Windows Management Framework
and install it.

Next you need to configure the Windows Remote Management Service. The
Ansible project provides a script that will configure Windows Remote Management
automatically in the way that Ansible expects it to be configured. While you can set
it up manually, it is highly recommended that you use this script instead to prevent
misconfiguration. To download and run this script, open a PowerShell terminal and
run the following commands:

Invoke-WebRequest
https://raw.githubusercontent.com/ansible/ansible/release1.7.0/
examples/scripts/ConfigureRemotingForAnsible.ps1 -OutFile
ConfigureRemotingForAnsible.ps1

.\ConfigureRemotingForAnsible.ps1

The first command downloads the configuration script from the Ansible project on
GitHub, and the second command runs it. You should receive the output Ok from the
second script if everything worked correctly.

You should now be able to connect to your machine and configure it with Ansible.
As we did earlier, let's run a ping command to confirm that Ansible is able to execute
its modules remotely. While Unix machines can use the ping module, Windows
machines use the win_ping module. The usage is almost exactly the same; however,
as we've added the password to the inventory file, you don't need the -k option.

$ ansible web01.ad.example.com -u daniel -m win_ping

If everything works correctly, you should see the following output:

web01.ad.example.com | success >> {

 "changed": false,

 "ping": "pong"

}

The output indicates that Ansible was able to connect to the Windows Remote
Management Service, login successfully, and execute a module on the remote host.
If this works correctly, then you should be able to use all the other Windows
modules to manage your machine.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Ansible

[10]

First steps with Ansible
Ansible modules take arguments in key-value pairs that look similar to key=value,
perform a job on the remote server, and return information about the job as JSON.
The key-value pairs allow the module to know what to do when requested. They can
be hardcoded values, or in playbooks they can use variables, which will be covered
in Chapter 2, Simple Playbooks. The data returned from the module lets Ansible know
if anything changed in the managed host or if any information kept by Ansible
should be changed afterwards.

Modules are usually run within playbooks, as this lets you chain many together, but
they can also be used on the command line. Previously, we used the ping command
to check that Ansible had been correctly setup and was able to access the configured
node. The ping module only checks that the core of Ansible is able to run on the
remote machine, but effectively does nothing.

A slightly more useful module is named setup. This module connects to the
configured node, gathers data about the system, and then returns those values.
This isn't particularly handy for us while running from the command line. However,
in a playbook, you can use the gathered values later in other modules.

To run Ansible from the command line, you need to pass two things, though usually
three. First is a host pattern to match the machine that you want to apply the module
to. Second you need to provide the name of the module that you wish to run and
optionally any arguments that you wish to give to the module. For the host pattern,
you can use a group name, a machine name, a glob, and a tilde (~), followed by a
regular expression matching hostnames. Alternatively, to symbolize all of these, you
can either use the word all or simply *. Running Ansible modules on the command
line this way is referred to as an ad hoc Ansible command.

To run the setup module on one of your nodes, you need the following
command line:

$ ansible machinename -u root -k -m setup

The setup module will then connect to the machine and give you a number of useful
facts back. All the facts provided by the setup module itself are prepended with
ansible_ to differentiate them from variables.

This module will work on both Windows and Unix machines. Currently, Unix
machines will give much more information than a Windows machine. However,
as new versions of Ansible are released, you can expect to see more Windows
functionality get included along with Ansible.

machinename | success >> {

 "ansible_facts": {

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[11]

 "ansible_distribution": "Microsoft Windows NT 6.3.9600.0",

 "ansible_distribution_version": "6.3.9600.0",

 "ansible_fqdn": "ansibletest",

 "ansible_hostname": "ANSIBLETEST",

 "ansible_ip_addresses": [

 "100.72.124.51",

 "fe80::1fd:fc3b:1eff:350d"

],

 "ansible_os_family": "Windows",

 "ansible_system": "Win32NT",

 "ansible_totalmem": "System.Object[]"

 },

 "changed": false

}

The following is a table of the most common values you will use; not all of these will
be available on all machines. Windows machines especially return a lot less data
from the setup module.

Field Example Description
ansible_architecture x86_64 This is the architecture of the managed

machine
ansible_distribution CentOS This is the Linux or Unix distribution on

the managed machine
ansible_
distribution_version

6.3 This is the version of the preceding
distribution

ansible_domain example.com This is the domain name part of the
server's hostname

ansible_fqdn machinename.
example.com

This is the fully qualified domain name
of the managed machine

ansible_interfaces ["lo", "eth0"] This is a list of all the interfaces the
machine has, including the loopback
interface

ansible_kernel 2.6.32-279.el6.
x86_64

This is the kernel version installed on the
managed machine

ansible_memtotal_mb 996 This is the total memory in megabytes
available on the managed machine

ansible_processor_
count

1 These are the total number of CPUs
available on the managed machine

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Ansible

[12]

Field Example Description
ansible_
virtualization_role

guest This determines whether the machine is
a guest or a host machine

ansible_
virtualization_type

kvm This is the type of virtualization setup
on the managed machine

On a Unix machine, these variables are gathered using Python from the managed
machine; if you have facter or ohai installed on the remote node, the setup module
will execute them and return their data as well. As with other facts, ohai facts are
prepended with ohai_ and facter facts with facter_. While the setup module
doesn't appear to be too useful on the command line, it is useful once you start
writing playbooks. Note that facter and ohai are not available in Windows hosts.

If all the modules in Ansible do as little as the setup and the ping module, we
will not be able to change anything on the remote machine. Almost all of the other
modules that Ansible provides, such as the file module, allow us to actually
configure the remote machine.

The file module can be called with a single path argument; this will cause it to
return information about the file in question. If you give it more arguments, it will
try and alter the file's attributes and tell you if it has changed anything. Ansible
modules will tell you if they have changed anything, which becomes more important
when you are writing playbooks.

You can call the file module, as shown in the following command, to see details
about /etc/fstab:

$ ansible machinename -u root -k -m file -a 'path=/etc/fstab'

The preceding command should elicit a response like the following:

machinename | success >> {

 "changed": false,

 "group": "root",

 "mode": "0644",

 "owner": "root",

 "path": "/etc/fstab",

 "size": 779,

 "state":

 "file"

}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[13]

Alternatively, the response could be something like the following command to create
a new test directory in /tmp:

$ ansible machinename -u root -k -m file -a 'path=/tmp/
teststate=directory mode=0700 owner=root'

The preceding command should return something like the following:

machinename | success >> {

 "changed": true,

 "group": "root",

 "mode": "0700",

 "owner": "root",

 "path": "/tmp/test",

 "size": 4096,

 "state": "directory"

}

We can see that the changed variable is set to true in the response, because the
directory doesn't exist or has different attributes and changes were required to make
it match the state given by the provided arguments. If it is run a second time with
the same arguments, the value of changed will be set to false, which means that the
module did not make any changes to the system.

There are several modules that accept similar arguments to the file module, and
one such example is the copy module. The copy module takes a file on the controller
machine, copies it to the managed machine, and sets the attributes as required. For
example, to copy the /etc/fstab file to /tmp on the managed machine, you will use
the following command:

$ ansible machinename -m copy -a 'src=/etc/fstab dest=/tmp/fstab'

The preceding command, when run the first time, should return something like
the following:

machinename | success >> {

 "changed": true,

 "dest": "/tmp/fstab",

 "group": "root",

 "md5sum": "fe9304aa7b683f58609ec7d3ee9eea2f",

 "mode": "0700",

 "owner": "root",

 "size": 637,

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Ansible

[14]

 "src": "/root/.ansible/tmp/ansible-1374060150.96-
77605185106940/source",

 "state": "file"

}

There is also a module named command that will run any arbitrary command on the
managed machine. This lets you configure it with any arbitrary command, such as a
preprovided installer or a self-written script; it is also useful for rebooting machines.
Note that this module does not run the command within the shell, so you cannot
perform redirection, use pipes, expand shell variables, or background commands.

Ansible modules strive to prevent changes being made when they are not required.
This is referred to as idempotency and can make running commands against multiple
servers much faster. Unfortunately, Ansible cannot know if your command has
changed anything or not, so to help it be more idempotent, you have to give it some
help. It can do this either via the creates or the removes argument. If you give a
creates argument, the command will not run if the filename argument exists. The
opposite is true of the removes argument; if the filename exists, the command will run.

You can run the command as follows:

$ ansible machinename -m command -a 'rm -rf /tmp/testing
removes=/tmp/testing'

If there is no file or directory named /tmp/testing, the command output will
indicate that it was skipped, as follows:

machinename | skipped

Otherwise, if the file did exist, it will look like the following code:

ansibletest | success | rc=0 >>

Often it is better to use another module in place of the command module. Other
modules offer more options and can better capture the problem domain they work
in. For example, it would be much less work for Ansible and also the person writing
the configurations to use the file module in this instance, since the file module
will recursively delete something if the state is set to absent. So the preceding
command would be equivalent to the following command:

$ ansible machinename -m file -a 'path=/tmp/testing state=absent'

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[15]

If you need to use features usually available in a shell while running your command,
you will need the shell module. This way you can use redirection, pipes, or job back
grounding. You can pick which shell to use with the executable argument. You can
use the shell module as follows:

$ ansible machinename -m shell -a '/opt/fancyapp/bin/installer.sh >/var/
log/fancyappinstall.log creates=/var/log/fancyappinstall.log'

Module help
Unfortunately, we don't have enough space to cover every module that is available
in Ansible; luckily though, Ansible includes a command name ansible-doc that can
retrieve help information. All the modules included within Ansible have this data
populated; however, with modules gathered from elsewhere you may find less help.
The ansible-doc command also allows you to see a list of all modules available to you.

To get a list of all the modules that are available to you along with a short description
of each type, use the following command:

$ ansible-doc -l

To see the help file for a particular module, you supply it as the single argument to
ansible-doc. To see the help information for the file module, for example, use the
following command:

$ ansible-doc file

Summary
In this chapter, we have covered which installation type to choose for installing
Ansible and how to build an inventory file to reflect your environment. After this
we saw how to use Ansible modules in an ad hoc style for simple tasks. Finally we
discussed how to learn which modules are available on your system and how to use
the command line to get instructions for using a module.

In the next chapter, you will learn how to use many modules together in a playbook.
This allows you to perform more complex tasks than you could do with single
modules alone.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[17]

Simple Playbooks
Ansible can be used as a command-line tool for making small changes. However, its
real power lies in its scripting abilities. While setting up machines, we almost always
need to do more than one thing at a time. Ansible uses a concept named playbook to
do this. Using playbooks, we can perform many actions at once, and across multiple
systems. They provide a way to orchestrate deployments, ensure a consistent
configuration, or simply perform a common task.

Playbooks are expressed in YAML, and for the most part, Ansible uses a standard
YAML parser. This means that we have all the features of YAML available to us as
we write them. For example, we can use the same commenting system in playbook
as we would in YAML. Many lines of a playbook can also be written and represented
in YAML data types. See http://www.yaml.org/ for more information.

Playbooks also open up many opportunities. They allow us to carry the state from
one command to the other. For example, we can grab the content of a file on one
machine, register it as a variable, and then use the value on another machine. This
allows us to make complex deployment mechanisms that will be impossible with the
Ansible command alone. Additionally, since each module tries to be idempotent, we
should be able to run a playbook several times and changes will only be made if they
need to be.

The command to execute a playbook is ansible-playbook. It accepts arguments
similar to the Ansible command-line tool. For example, -k (--ask-pass) and -K
(--ask-sudo) make Ansible prompt for the SSH and sudo passwords, respectively;
-u can be used to set the user to use for SSH. However, these options can also be set
inside the playbooks themselves in the target section. For example, to use the play
named example-play.yml, we can use the following command:

$ ansible-playbook example-play.yml

www.it-ebooks.info

http://www.yaml.org/
http://www.it-ebooks.info/

Simple Playbooks

[18]

The Ansible playbooks are made up of one or more plays. A play consists of
three sections:

•	 The target section defines the hosts on which the play will be run, and
how it will be run. This is where we set the SSH username and other
SSH-related settings.

•	 The variable section defines variables, which will be made available to the
play while running.

•	 The task section lists all the modules in the order we want them to be run
by Ansible.

We can include as many plays as we want in a single YAML file. YAML files start
with --- and contain many key values and lists. In YAML line indentation is used
to indicate variable nesting to the parser, which also makes the file easier to read.

A full example of an Ansible play looks like the following code snippet:

- hosts: webservers
 user: root
 vars:
 apache_version: 2.6
 motd_warning: 'WARNING: Use by ACME Employees ONLY'
 testserver: yes
 tasks:
 - name: setup a MOTD
 copy:
 dest: /etc/motd
 content: "{{ motd_warning }}"

In the next few sections, we will examine each section and explain in detail how
they work.

The target section
The target section looks like the following code snippet:

- hosts: webservers
 user: root

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[19]

This is an incredibly simple version, but likely to be all we need in most cases. Each
play exists within a list. As per the YAML syntax, the line must start with a dash. The
hosts that a play will be run on must be set in the value of hosts. This value uses the
same syntax as the one used when selecting hosts using the Ansible command line,
which we discussed in the previous chapter. The host-pattern-matching features of
Ansible were also discussed in the previous chapter. In the next line, the user tells
the Ansible playbook which user to connect to the machine as.

The other lines that we can provide in this section are as follows:

Name Description
sudo Set this to yes if you want Ansible to use sudo to become the root

once it is connected to the machines in the play.
user This defines the username to connect to the machine originally,

before running sudo if configured.
sudo_user This is the user that Ansible will try and become using sudo.

For example, if we set sudo to yes and user to daniel, setting
sudo_user to kate will cause Ansible to use sudo to get from
daniel to kate once logged in. If you were doing this in an
interactive SSH session, we could use sudo -u kate while you
are logged in as daniel.

connection This allows us to tell Ansible what transport to use to connect to
the remote host. We will mostly use ssh or paramiko for remote
hosts. However, we could also use local to avoid a connection
overhead when running things on the localhost. Most of the
time we will be using either local, winrm or ssh here.

gather_facts Ansible will automatically run the setup module on the remote
hosts unless we tell it not to. If we don't need the variables from the
setup module, we could set this now and save some time.

The variable section
Here, we can define variables that apply to the entire play on all machines. We can
also make Ansible prompt for variables if they weren't supplied on the command
line. This allows us to make easily maintainable plays, and prevents us from
changing the same thing in several parts of the play. This also allows us to have the
entire configuration for the play stored at the top, where we can easily read and
modify it without worrying about what the rest of the play does.

www.it-ebooks.info

http://www.it-ebooks.info/

Simple Playbooks

[20]

Variables in this section of a play can be overridden by machine facts (those that are set
by modules), but they themselves override the facts we set in our inventory. So they
are useful to define defaults that we might collect in a module later, but they can't be
used to keep defaults for inventory variables as they will override those defaults.

Variable declarations, which happen in the vars section, look like the values in the
target section and contain a YAML dictionary or a list. An example looks like the
following code snippet:

vars:
 apache_version: 2.6
 motd_warning: 'WARNING: Use by ACME Employees ONLY'
 testserver: yes

Variables can also be loaded from external YAML files by giving Ansible a list of
variable files to load. This is done in a similar way using the vars_files directive.
Then simply provide the name of another YAML file that contains its own dictionary.
This means that instead of storing the variables in the same file, they can be stored
and distributed separately, allowing us to share our playbook with others.

Using vars_files, the files look like the following code snippet in our playbook:

vars_files:
 conf/country-AU.yml
 conf/datacenter-SYD.yml
 conf/cluster-mysql.yml

In the previous example, Ansible looks for country-AU.yml, datacenter-SYD.yml,
and cluster-mysql.yml in the conf folder relative to the playbook path. Each YAML
file looks similar to the following code snippet:

ntp: ntp1.au.example.com
TZ: Australia/Sydney

Finally, we can make Ansible ask the user for each variable interactively. This is
useful when we have variables that we don't want to make available for automation,
and instead require human input. One example where this is useful is when
prompting for the passphrases used to decrypt secret keys for the HTTPS servers.

We can instruct Ansible to prompt for variables with the following code snippet:
vars_prompt:
 - name: https_passphrase
 prompt: Key Passphrase
 private: yes

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[21]

In the previous example, https_passphrase is where the entered data will be
stored. The user will be prompted with Key Passphrase, and because private
is set to yes, the value will not be printed on the screen as the user enters it.

We can use variables, facts, and inventory variables with the help of
{{ variablename }}. We can even refer to complex variables, such as dictionaries,
with a dotted notation. For example a variable named httpd, with a key in it named
maxclients, will be accessed as {{ httpd.maxclients }}. This works with facts
from the setup module too. For example, we can get the IPv4 address of a network
interface named eth0 using {{ ansible_eth0.ipv4.address }}.

Variables that are set in the variable section do not survive between different plays
in the same playbook. However, facts gathered by the setup module or set by
set_fact do. This means if we are running a second play on the same machines, or
a subset of the machines in an earlier play, we can set gather_facts in the target
section to false. The setup module can sometimes take a while to run, so this can
dramatically speed up plays, especially in plays where the serial is set to a low value.

The task section
The task section is the last section of each play. It contains a list of actions that we
want Ansible to perform in the order we want them to be performed. There are
several styles in which we can express each module's arguments. We suggest you
try to stick with one as much as possible, and use the others only when required.
This makes our playbooks easier to read and maintain. The following code snippet
is what a task section looks like with all three styles shown:

tasks:
 - name: install apache
 action: yum name=httpd state=installed

 - name: configure apache
 copy: src=files/httpd.conf dest=/etc/httpd/conf/httpd.conf

 - name: restart apache
 service:
 name: httpd
 state: restarted

www.it-ebooks.info

http://www.it-ebooks.info/

Simple Playbooks

[22]

Here we see the three different styles of syntax being used to install, configure, and
start the Apache web server as it will look on a CentOS machine. The first task shows
us how to install Apache using the original syntax, which requires us to call the
module as the first keyword inside an action key. The second task copies Apache's
configuration file into place using the second style of the task. In this style, use the
module name in place of the action keyword and its value simply becomes its
argument. Finally, the last task, the third style, shows how to use the service module
to restart Apache. In this style, we use the module name as the key, as usual, but we
supply the arguments as a YAML dictionary. This can come in handy when we are
providing a large number of arguments to a single module, or if the module wants
the arguments in a complex form, such as the cloud formation module. The latter
style is quickly becoming the preferred way of writing playbooks, as an increasing
number of modules require complex arguments. In this book, we will be using this
style in order to save space for the examples and prevent line wrapping.

Note that names are not required for tasks. However, they make good documentation
and allow us to refer to each task later on, if required. This will become useful
especially when we come to handlers. The names are also outputted to the console
when the playbook is run, so that the user can tell what is happening. If we don't
provide a name, Ansible will just use the action line of the task or the handler.

Unlike other configuration management tools, Ansible does not
provide a fully featured dependency system. This is a blessing
and a curse; with a complete dependency system, we can get to a
point where we are never quite sure what changes will be applied
to a particular machine. Ansible, however, does guarantee that
our changes will be executed in the order they are written. So, if
one module depends on another module that is executed before
it, simply place one before the other in the playbook.

The handlers section
The handlers section is syntactically the same as the task section and supports the
same format for calling modules. Handlers are called only when the task they were
called from, records that something changed during execution. To trigger a handler,
add a notify key to the task with the value set to the name of the task.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[23]

Handlers are run if previously triggered when Ansible has finished running the task
list. They are run in the order that they are listed in the handlers section, and even
if they are called multiple times in the task section, they will run only once. This is
often used to restart daemons after they have been upgraded and configured. The
following play demonstrates how we will upgrade an ISC DHCP (Dynamic Host
Configuration Protocol) server to the latest version, configure it, and set it to start
at boot. If this playbook is run on a server where the ISC DHCP daemon is already
running the latest version and the config files are not changed, the handler will not
be called and DHCP will not be restarted. Consider the following code for example:

- hosts: dhcp
 tasks:
 - name: update to latest DHCP
 yum
 name: dhcp
 state: latest
 notify: restart dhcp

 - name: copy the DHCP config
 copy:
 src: dhcp/dhcpd.conf
 dest: /etc/dhcp/dhcpd.conf
 notify: restart dhcp

 - name: start DHCP at boot
 service:
 name: dhcpd
 state: started
 enabled: yes

 handlers:
 - name: restart dhcp
 service:
 name: dhcpd
 state: restarted

www.it-ebooks.info

http://www.it-ebooks.info/

Simple Playbooks

[24]

Each handler can only be a single module, but we can notify a list of handlers from a
single task. This allows us to trigger many handlers from a single step in the task list.
For example, if we have just checked out a newer version of any Django application,
we can set a handler to migrate the database, deploy the static files, and restart
Apache. We can do this by simply using a YAML list on the notify action. This might
look something like the following code snippet:

- hosts: qroud
 tasks:
 - name: checkout Qroud
 git:
 repo:git@github.com:smarthall/Qroud.git
 dest: /opt/apps/Qroud force=no
 notify:
 - migrate db
 - generate static
 - restart httpd

 handlers:
 - name: migrate db
 command: ./manage.py migrate –all
 args:
 chdir: /opt/apps/Qroud

 - name: generate static
 command: ./manage.py collectstatic -c –noinput
 args:
 chdir: /opt/apps/Qroud

 - name: restart httpd
 service:
 name: httpd
 state: restarted

We can see that the git module is used to check out some public GitHub code, and
if that caused anything to change, it triggers the migrate db, generate static, and
restart httpd actions.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[25]

The playbook modules
Using modules in playbooks is a little bit different from using them in the command
line. This is mainly because we have many facts available from the previous modules
and the setup module. Certain modules don't work in the Ansible command line
because they require access to those variables. Other modules will work in the
command-line version, but are able to provide enhanced functionalities when used
in a playbook.

The template module
One of the most frequently used examples of a module that requires facts from
Ansible is the template module. This module allows us to design an outline of a
configuration file and then have Ansible insert values in the right places. To perform
this, Ansible uses the Jinja2 templating language. In reality, the Jinja2 templates can
be much more complicated than this, including things such as conditionals, for
loops, and macros. The following is an example of a Jinja2 configuration template for
configuring BIND:

{{ ansible_managed }}
options {
 listen-on port 53 {
 127.0.0.1;
 {% for ip in ansible_all_ipv4_addresses %}
 {{ ip }};
 {% endfor %}
 };
 listen-on-v6 port 53 { ::1; };
 directory "/var/named";
 dump-file "/var/named/data/cache_dump.db";
 statistics-file "/var/named/data/named_stats.txt";
 memstatistics-file "/var/named/data/named_mem_stats.txt";
};

zone "." IN {
 type hint;
 file "named.ca";
};

include "/etc/named.rfc1912.zones";
include "/etc/named.root.key";

{# Variables for zone config #}
{% if 'authorativenames' in group_names %}

www.it-ebooks.info

http://www.it-ebooks.info/

Simple Playbooks

[26]

 {% set zone_type = 'master' %}
 {% set zone_dir = 'data' %}
{% else %}
 {% set zone_type = 'slave' %}
 {% set zone_dir = 'slaves' %}
{% endif %}

zone "internal.example.com" IN {
 type {{ zone_type }};
 file "{{ zone_dir }}/internal.example.com";
 {% if 'authorativenames' not in group_names %}
 masters { 192.168.2.2; };
 {% endif %}
};

By convention, Jinja2 templates are named with the file extension of .j2; however,
this is not strictly required. Now let's break this example down into its parts. The
example starts with the following line of code:

{{ ansible_managed }}

This line adds a comment at the top of the file that shows which template the file
came from, the host, modification time of the template, and the owner. Putting this
somewhere in the template as a comment is a good practice, and it ensures that
people know what they should edit if they wish to alter it permanently.

Later, on the fifth line, there is a for loop:

 {% for ip in ansible_all_ipv4_addresses %}
 {{ ip }};
 {% endfor %}

For loops go through all the elements of a list once for each item in the list. They
optionally assign the item to the variable of our choice so that we can use it inside the
loop. This one loops across all the values in ansible_all_ipv4_addresses, which
is a list provided by the setup module that contains all the IPv4 addresses that the
machine has. Inside the for loop, it simply adds each of them into the configuration
to make sure BIND will listen on that interface.

Comments are also possible in templates such as the one on line 24:

{# Variables for zone config #}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[27]

Anything in between {# and #} is simply ignored by the Jinja2 template processor.
This allows us to add comments in the template that do not make it into the final file.
This is especially handy if we are doing something complicated, setting variables
within the template, or if the configuration file does not allow comments.

The next few lines are part of an if statement, which sets up zone_type and
zone_dir variables for use later in the template:

{% if 'authorativenames' in group_names %}
 {% set zone_type = 'master' %}
 {% set zone_dir = 'data' %}
{% else %}
 {% set zone_type = 'slave' %}
 {% set zone_dir = 'slaves' %}
{% endif %}

Anything between {% if %} and {% else %} is ignored if the statement in the if
tag is false. Here we check whether the value authorativenames is in the list of
group names that apply to this host. If this is true, the next two lines are set two
custom variables. zone_type is set to master and zone_dir is set to data. If this
host is not in the authorativenames group, zone_type and zone_dir will be set to
slave and slaves, respectively.

Finally, starting at line 33, we provide the actual configuration for the zone:

zone "internal.example.com" IN {
 type {{ zone_type }};
 file "{{ zone_dir }}/internal.example.com";
 {% if zone_type == 'slave' %}
 masters { 192.168.2.2; };
 {% endif %}
};

We set the type to the zone_type variable we created earlier, and the location
to zone_dir. Finally we check whether the zone type is a slave, and if it is, we
configure its master to a particular IP address.

To get this template to set up an authoritative nameserver, we need to create a group
in our inventory file named authorativenames and add some hosts under it. How
to do this was discussed back in Chapter 1, Getting Started with Ansible.

www.it-ebooks.info

http://www.it-ebooks.info/

Simple Playbooks

[28]

We can simply call the templates module and the facts from the machines will be
sent through, including the groups the machine is in. This is as simple as calling any
other module. The template module also accepts similar arguments to the copy
module such as owner, group, and mode. Consider the following code for example:

- name: Setup BIND
 host: allnames
 tasks:
 - name: configure BIND
 template: src=templates/named.conf.j2 dest=/etc/named.conf
owner=root group=named mode=0640

The set_fact module
The set_fact module allows us to build our own facts on the machine inside an
Ansible play. These facts can then be used inside templates or as variables in the
playbook. Facts act just like arguments that come from modules such as the setup
module, in that they work on a per-host basis. We should use this to avoid putting
complex logic into templates. For example, if we are trying to configure a buffer to
take a certain percentage of RAM, we should calculate the value in the playbook.

The following example shows how to use set_fact to configure a MySQL server
to have an InnoDB buffer size of approximately half of the total RAM available on
the machine:

- name: Configure MySQL
 hosts: mysqlservers
 tasks:
 - name: install MySql
 yum:
 name: mysql-server
 state: installed

 - name: Calculate InnoDB buffer pool size
 set_fact:
 innodb_buffer_pool_size_mb="{{ansible_memtotal_mb/2}}"

 - name: Configure MySQL
 template:
 src: templates/my.cnf.j2
 dest: /etc/my.cnf
 owner: root

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[29]

 group: root
 mode: 0644
 notify: restart mysql

 - name: Start MySQL
 service:
 name: mysqld
 state: started
 enabled: yes

 handlers:
 - name: restart mysql
 service:
 name: mysqld
 state: restarted

The first task here simply installs MySQL using yum. The second task creates a fact
by getting the total memory of the managed machine, dividing it by two, losing any
non-integer remainder, and putting it in a fact called innodb_buffer_pool_size_mb.
The next line then loads a template into /etc/my.cnf to configure MySQL. Finally,
MySQL is started and set to start at boot time. A handler is also included to restart
MySQL when its configuration changes.

The template then only needs to get the value of innodb_buffer_pool_size and
place it into the configuration. This means we can re-use the same template in places
where the buffer pool should be one-fifth of the RAM, or one-eighth, and simply
change the playbook for those hosts. In this case, the template will look something
like the following code snippet:

{{ ansible_managed }}
[mysqld]
datadir=/var/lib/mysql
socket=/var/lib/mysql/mysql.sock
Disabling symbolic-links is recommended to prevent assorted
 security risks
symbolic-links=0
Settings user and group are ignored when systemd is used.
If we need to run mysqld under a different user or group,
customize our systemd unit file for mysqld according to the
instructions in http://fedoraproject.org/wiki/Systemd

Configure the buffer pool
innodb_buffer_pool_size = {{
 innodb_buffer_pool_size_mb|default(128) }}M

www.it-ebooks.info

http://www.it-ebooks.info/

Simple Playbooks

[30]

[mysqld_safe]
log-error=/var/log/mysqld.log
pid-file=/var/run/mysqld/mysqld.pid

We can see that in the previous template, we are simply putting the variables
we get from the play into the template. If the template doesn't see the
innodb_buffer_pool_size_mb fact, it simply uses a default of 128.

The pause module
The pause module stops the execution of a playbook for a certain period of time. We
can configure it to wait for a particular period, or we can make it prompt for the user
to continue. While effectively useless when used from the Ansible command line, it
can be very handy when used inside a playbook.

Generally, the pause module is used when we want the user to provide confirmation
to continue, or if manual intervention is required at a particular point. For example, if
we have just deployed a new version of a web application to a server, and we need to
have the user check manually to make sure it looks okay before we configure them to
receive production traffic, we can put a pause there. It is also handy to warn the user
of a possible problem and give them the option of continuing. This will make Ansible
print out the names of the servers and ask the user to press Enter to continue. If used
with the serial key in the target section, it will ask once for each group of hosts that
Ansible is running on. This way we can give the user the flexibility of running the
deployment at our own pace while they interactively monitor the progress.

Less usefully, this module can simply wait for a specified period of time. This is not
useful always as we usually don't know how long a particular action might take,
and guessing might have disastrous outcomes. We should not use it for waiting
for networked daemons to start up; instead we should use the wait_for module
(described in the next section) for this task. The following play demonstrates using
the pause module first in the user interactive mode and then in the timed mode:

- hosts: localhost
 tasks:
 - name: wait on user input
 pause:
 prompt: "Warning! Press ENTER to continue or CTRL-C to quit."

 - name: timed wait
 pause:
 seconds: 30

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[31]

The wait_for module
The wait_for module is used to poll a particular TCP port and not continue until
that port accepts a remote connection. The polling is done from the remote machine.
If we only provide a port, or set the host argument to localhost, the poll will try
to connect to the managed machine. We can utilize local_action to run the
command from the controller machine and use the ansible_hostname variable as
our host argument to make it try and connect to the managed machine from the
controller machine.

This module is particularly useful for daemons that can take a while to start, or
things that we want to run in the background. Apache Tomcat ships with an init
script, which immediately returns when we try to start it, leaving Tomcat starting
in the background. Depending on the application that Tomcat is configured to load,
it might take anywhere between two seconds to 10 minutes to fully start up and
be ready for connections. We can time our application's start up and use the pause
module. However, the next deployment might take longer or shorter, and this will
break our deployment mechanism. With the wait_for module, we have Ansible
to recognize when Tomcat is ready to accept connections. The following is a play
that does exactly this:

- hosts: webapps
 tasks:
 - name: Install Tomcat
 yum:
 name: tomcat7
 state: installed

 - name: Start Tomcat
 service:
 name: tomcat7
 state: started

 - name: Wait for Tomcat to start
 wait_for:
 port: 8080
 state: started

After the completion of this play, Tomcat should be installed, started, and ready to
accept requests. We can append further modules to this example and depend on
Tomcat being available and listening.

www.it-ebooks.info

http://www.it-ebooks.info/

Simple Playbooks

[32]

The assemble module
The assemble module combines several files on the managed machine and saves
them to another file on the managed machine. This is useful in playbooks when we
have a config file which does not allow includes or globbing in its includes. This is
useful for the authorized_keys file for say, the root user. The following play will
send a bunch of SSH public keys to the managed machine, then make it assemble
them all together and place it in the root user's home directory:

- hosts: all
 tasks:
 - name: Make a Directory in /opt
 file:
 path: /opt/sshkeys
 state: directory
 owner: root
 group: root
 mode: 0700

 - name: Copy SSH keys over
 copy:
 src: "keys/{{ item }}.pub"
 dest: "/opt/sshkeys/{{ item }}.pub"
 owner: root
 group: root
 mode: 0600
 with_items:
 - dan
 - kate
 - mal

 - name: Make the root users SSH config directory
 file:
 path: /root/.ssh
 state: directory
 owner: root
 group: root
 mode: 0700

 - name: Build the authorized_keys file
 assemble:
 src: /opt/sshkeys
 dest: /root/.ssh/authorized_keys
 owner: root
 group: root
 mode: 0700

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[33]

By now, this should all look familiar. We might note the with_items key in the task
that copies the keys over, and the {{ items }} variable. These will be explained
later in Chapter 3, Advanced Playbooks, but all we need to know now is that whatever
item we supply to the with_items key is substituted into the {{ items }} variable,
similar to how a for loop works. This simply lets us easily copy many files to the
remote host at once.

The last task shows the usage of the assemble module. We pass the directory
containing the files to be concatenated into the output as the src argument, and then
pass dest as the output file. It also accepts many of the same arguments (owner,
group, and mode) as the other modules that create files. It also combines the files in
the same order as the ls -1 command lists them. This means we can use the same
approach as udev and rc.d, and prepend numbers to the files to ensure that they end
up in the correct order.

The add_host module
The add_host module is one of the most powerful modules that are available in
playbooks. add_host lets us dynamically add new machines inside a play. We can
do this using the uri module to get a host from our Configuration Management
Database (CMDB) and then adding it to the current play. This module will also add
our host to a group, dynamically creating that group if it does not already exist.

The module simply takes a name and a groups argument, which are rather
self-explanatory, and sets the hostname and groups. We can also send extra
arguments, and these are treated in the same way in which extra values in
the inventory file are treated. This means we can set ansible_ssh_user,
ansible_ssh_port, and so on.

If we are using a cloud provider, such as RackSpace or Amazon EC2, there are
modules available in Ansible that will let us manage our compute resources. We
might decide to create machines at the start of the play, if we can't find them in the
inventory. If we do this, we can use this module to add the machines to the inventory
so that we can configure them later. Here is an example of using Google Compute
Modules to do this:

- name: Create infrastructure
 hosts: localhost
 connection: local
 tasks:
 - name: Make sure the mailserver exists
 gce:
 image: centos-6

www.it-ebooks.info

http://www.it-ebooks.info/

Simple Playbooks

[34]

 name: mailserver
 tags: mail
 zone: us-central1-a
 register: mailserver
 when: '"mailserver" not in groups.all'

 - name: Add new machine to inventory
 add_hosts:
 name: mailserver
 ansible_ssh_host: "{{ mailserver.instance_data[0].public_ip
}}"
 groups: tag_mail
 when: not mailserver|skipped

The group_by module
In addition to creating hosts dynamically in our play, we can also create groups. The
group_by module can create groups based on the facts about the machines, including
the ones we set up ourselves using the add_fact module explained earlier. The
group_by module accepts one argument, key, which takes the name of a group the
machine will be added to. By combining this with the use of variables, we can make
the module add a server to a group based on its operating system, virtualization
technology, or any other fact that we have access to. We can then use this group in
the target section of any subsequent plays, or in templates.

So if we want to create a group that groups the hosts by the operating system, we
will call the module as follows:

- name: Create operating system group
 hosts: all
 tasks:
 - group_by: key=os_{{ ansible_distribution }}

- name: Run on CentOS hosts only
 hosts: os_CentOS
 tasks:
 - name: Install Apache
 yum: name=httpd state=latest

- name: Run on Ubuntu hosts only
 hosts: os_Ubuntu
 tasks:
 - name: Install Apache
 apt: pkg=apache2 state=latest

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[35]

We can then use these groups to install packages using the right packager. In practice,
this is often used to avoid Ansible outputting lots of "skipped" messages while it
is executing. Instead of adding when clauses to each task that needs to be skipped,
we can create a group for machines where the action should happen and then use a
separate play to configure those machines separately. Here is an example of installing
an ssl private key across Debian and RedHat machines without using a when clause:

- name: Catergorize hosts
 hosts: all
 tasks:
 - name: Gather hosts by OS
 group_by:
 key: "os_{{ ansible_os_family }}"

- name: Install keys on RedHat
 hosts: os_RedHat
 tasks:
 - name: Install SSL certificate
 copy:
 src: sslcert.pem
 dest: /etc/pki/tls/private/sslcert.pem

- name: Install keys on Debian
 hosts: os_Debian
 tasks:
 - name: Install SSL certificate
 copy:
 src: sslcert.pem
 dest: /etc/ssl/private/sslcert.pem

The slurp module
The slurp module grabs a file from the remote system, encodes it with base 64, and
then returns the result. We can utilize the register keyword in order to place the
contents into a fact. When using the slurp module to fetch files, we should be wary
of the file size. This module loads the entire file into memory, so using slurp with
large files can consume all available RAM and cause our system to crash. Files also
need to be transferred from the managed machine to the controller machine, and for
large files, this could take a considerable amount of time.

www.it-ebooks.info

http://www.it-ebooks.info/

Simple Playbooks

[36]

Combining this module with the copy module provides a way to copy files between
two machines. This is demonstrated in the following playbook:

- name: Fetch a SSH key from a machine
 hosts: bastion01
 tasks:
 - name: Fetch key
 slurp:
 src: /root/.ssh/id_rsa.pub
 register: sshkey

- name: Copy the SSH key to all hosts
 hosts: all
 tasks:
 - name: Make directory for key
 file:
 state: directory
 path: /root/.ssh
 owner: root
 group: root
 mode: 0700

 - name: Install SSH key
 copy:
 contents: "{{ hostvars.bastion01.sshkey|b64decode }}"
 dest: /root/.ssh/authorized_keys
 owner: root
 group: root
 mode: 0600

Note that because the slurp module encodes the data
with base 64, we have to use the jinja2 filter named
b64decode to decode the data before the copy module can
use it. Filters will be covered in more detail in Chapter 3,
Advanced Playbooks.

Windows playbook modules
Windows support is new to Ansible and as such, there aren't many modules
available for it. Modules that are windows only are named beginning with win_.
There are also a few modules available, which work on both Windows and Unix
systems such as the slurp module, which we covered earlier.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[37]

Extra care should be taken in Windows modules to quote the path strings.
Backslashes are an important character in both YAML, where they escape characters
and in windows paths, where they denote directories. Because of this, YAML might
confuse parts of our paths for escape sequences. To prevent this, we use single
quotes on our strings. Additionally, if our path is a directory itself, we should leave
off the trailing backspace so that YAML doesn't confuse the end of the string with
an escape sequence. If we have to end our path with a backslash, make it a double
backslash, and the second one will be ignored. The following are some examples of
correct and incorrect strings:

Correct
'C:\Users\Daniel\Documents\secrets.txt'
'C:\Program Files\Fancy Software Inc\Directory'
'D:\\' # \\ becomes \
Incorrect
"C:\Users\Daniel\newcar.jpg" # \n becomes a new line
'C:\Users\Daniel\Documents\' # \' becomes '

Cloud Infrastructure modules
Infrastructure modules allow us to not only manage the setup of our machines,
but also the creation of those machines themselves. Apart from this, we can also
automate much of the infrastructure surrounding them. This can be used as a simple
replacement for services such as Amazon Cloud Formation.

When creating machines that we want to manage in a later play in the same playbook,
we will want to use the add_hosts module that we discussed earlier in the chapter
to add the machine to the in-memory inventory so that it can be the target of further
plays. We might also wish to run the group_by module to arrange them into groups
as we would arrange other machines. The wait_for module should also be used to
check that the machine is responding to SSH connections before trying to manage it.

The Cloud Infrastructure modules can be a bit complicated to use, so we will be
showing how to setup and install the Amazon modules. For details on how to
configure the other modules, see their documentation using ansible-doc.

The AWS modules
The AWS modules work similar to how most AWS tools work. This is because they
use the python boto library, which is popular with many other tools and follows the
conventions of the original AWS tools that were released by Amazon.

www.it-ebooks.info

http://www.it-ebooks.info/

Simple Playbooks

[38]

It is best to install boto the same way that we installed Ansible. For most use cases,
we will be running the module on the managed machine, so we will only need to
install the boto module there. We can install the boto library in the following ways:

•	 Centos/RHEL/Fedora: yum install python-boto
•	 Ubuntu: apt-get install python-boto
•	 Pip: pip install boto

Then we need to setup the correct environment variables. The easiest way to do this
is by running the modules using the localhost connection on our local machine. If
we do this, then the variables from our shell are passed through and automatically
become available to the Ansible module. Here, are the variables that the boto library
uses to connect to AWS:

Variable Name Description
AWS_ACCESS_KEY This is the access key for a valid IAM account
AWS_SECRET_KEY This is the secret key corresponding to the access key above
AWS_REGION This is the default region to use unless overridden

We can set these environment variables in our example using the following code:

export AWS_ACCESS_KEY="AKIAIOSFODNN7EXAMPLE"
export AWS_SECRET_KEY="wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY"
export AWS_REGION="us-east-1"

These are just example credentials and will not work. Once we have these set, we can
then use the AWS modules. In the next block of code, we combine several modules
from this chapter to create a machine and add it to the inventory. Several features
not yet discussed, such as register and delegate_to, are used in the following
example, which will be covered in Chapter 3, Advanced Playbooks:

- name: Setup an EC2 instance
 hosts: localhost
 connection: local
 tasks:
 - name: Create an EC2 machine
 ec2:
 key_name: daniel-keypair
 instance_type: t2.micro
 image: ami-b66ed3de
 wait: yes
 group: webserver

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[39]

 vpc_subnet_id: subnet-59483
 assign_public_ip: yes
 register: newmachines

 - name: Wait for SSH to start
 wait_for:
 host: "{{ newmachines.instances[0].public_ip }}"
 port: 22
 timeout: 300
 delegate_to: localhost

 - name: Add the machine to the inventory
 add_host:
 hostname: "{{ newmachines.instances[0].public_ip }}"
 groupname: new

- name: Configure the new machines
 hosts: new
 sudo: yes
 tasks:
 - name: Install a MOTD
 template:
 src: motd.j2
 dest: /etc/motd

Summary
In this chapter, we covered the sections that are available in the playbook file.
We also learned how to use variables to make our playbooks maintainable, how
to trigger handlers when changes have been made, and finally, we looked at how
certain modules are more useful when used inside a playbook. You can explore
further modules provided with Ansible using the official documentation at
http://docs.ansible.com/modules_by_category.html.

In the next chapter, we will be looking into the more complex features of playbooks.
This will allow us to build more complex playbooks capable of deploying and
configuring entire systems.

www.it-ebooks.info

http://docs.ansible.com/modules_by_category.html
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[41]

Advanced Playbooks
The playbooks that we have looked at so far are simple and just run a number of
modules in order. Ansible allows much more control over the execution of your
playbook. Using the following techniques, you should be able to perform even the
most complex deployments:

•	 Running operations in parallel
•	 Looping
•	 Conditional execution
•	 Task delegation
•	 Extra variables
•	 Finding files with variables
•	 Environment variables
•	 External data lookups
•	 Storing data
•	 Processing data
•	 Debugging playbooks

Running operations in parallel
By default, Ansible will only fork up to five times, so it will only run an operation
on five different machines at once. If you have a large number of machines, or
you have lowered this maximum fork value, then you may want to launch things
asynchronously. Ansible's method for performing this is to launch the task and then
poll for it to complete. This allows Ansible to start the job across all the required
machines while still using the maximum forks.

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Playbooks

[42]

To run an operation in parallel, use the async and poll keywords. The async
keyword triggers Ansible to run the job in parallel, and its value will be the maximum
time that Ansible will wait for the command to complete. The value of poll indicates
to Ansible how often to poll to check if the command has been completed.

If you wanted to run updatedb across an entire cluster of machines, it might look like
the following code:

- hosts: all
 tasks:
 - name: Install mlocate
 yum: name=mlocate state=installed

 - name: Run updatedb
 command: /usr/bin/updatedb
 async: 300
 poll: 10

You will notice that when you run the previous example on more than five machines,
the yum module acts differently to the command module. The yum module will run on
the first five machines, then the next five, and so on. The command module, however,
will run across all the machines and indicate the status once complete.

If your command starts a daemon that eventually listens on a port, you can start it
without polling so that Ansible does not check for it to complete. You can then carry
on with other actions and check for completion later using the wait_for module. To
configure Ansible to not wait for the job to complete, set the value of poll to 0.

Finally, if your task takes an extremely long time to run, you can tell Ansible to wait
for the job as long as it takes. To do this, set the value of async to 0.

You will want to use Ansible's polling in the following situations:

•	 You have a long-running task that may hit the timeout
•	 You need to run an operation across a large number of machines
•	 You have an operation for which you don't need to wait to complete

There are also a few situations where you should not use async or poll:

•	 If your job acquires locks that prevent other things from running
•	 Your job only takes a short time to run

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[43]

Looping
Ansible allows you to repeat a module several times with different inputs, for
example, if you had several files that should have similar permissions set. This
can save you a lot of repetition and allows you to iterate over facts and variables.

To do this, you can use the with_items key on an action and set the value to the list
of items that you are going to iterate over. This will create a variable for the module
named item, which will be set to each item in turn as your module is iterated over.
Some modules such as yum will optimize this so that instead of doing a separate
transaction for each package, they will operate on all of them at once.

Using with_items, the code looks like this:

tasks:
- name: Secure config files file:
 path: "/etc/{{ item }}"
 mode: 0600
 owner: root
 group: root
 with_items:
 - my.cnf
 - shadow
 - fstab

In addition to looping over fixed items, or a variable, Ansible also provides us a tool
called lookup plugins. These plugins allow you to tell Ansible to fetch the data from
somewhere externally. For example, you might want to find all the files that match a
particular pattern, and then upload them.

In this example, we upload all the public keys in a directory and then assemble them
into an authorized_keys file for the root user, as shown in the following example:

tasks:
 - name: Make key directory
 file:
 path: /root/.sshkeys
 ensure: directory
 mode: 0700
 owner: root
 group: root
 - name: Upload public keys
 copy:
 src: "{{ item }}"
 dest: /root/.sshkeys
 mode: 0600
 owner: root

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Playbooks

[44]

 group: root
 with_fileglob:
 - keys/*.pub
 - name: Assemble keys into authorized_keys file
 assemble:
 src: /root/.sshkeys
 dest: /root/.ssh/authorized_keys
 mode: 0600
 owner: root
 group: root

Repeating modules can be used in the following situations:

•	 Repeating a module many times with similar settings
•	 Iterating over all the values of a list
•	 Creating many files for later use with the assemble module to combine into

one large file
•	 Copying a directory of files when combined with the with_fileglob

lookup plugin

Conditional execution
Some modules, such as the copy module, provide mechanisms to configure it to skip
the execution of the module. You can also configure your own skip conditions that
will only execute the module if they resolve to true. This can be handy if your servers
use different packaging systems or have different filesystem layouts. It can also be
used with the set_fact module to allow you to compute many different things.

To skip a module, you can use the when key; this lets you provide a condition. If the
condition you set resolves to false, then the module will be skipped. The value that
you assign to when is a Python expression. You can use any of the variables or facts
available to you at this point.

If you want to process some of the items in the list depending
on a condition, then simply use the when clause. The when
clause is processed separately for each item in the list; the item
being processed is available as a variable using {{ item }}.

The following code is an example showing how to choose between apt and yum for
both Debian and Red Hat systems.

- name: Install VIM

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[45]

 hosts: all
 tasks:
 - name: Install VIM via yum
 yum:
 name: vim-enhanced
 state: installed
 when: ansible_os_family == "RedHat"

 - name: Install VIM via apt
 apt:
 name: vim
 state: installed
 when: ansible_os_family == "Debian"

 - name: Unexpected OS family
 debug:
 msg: "OS Family {{ ansible_os_family }} is not supported"
 fail: yes
 when: ansible_os_family != "RedHat" and ansible_os_family
!= "Debian"

There is also a third clause to print a message and fail if the OS is not recognized.

This feature can be used to pause at a particular point and will
wait for the user intervention to continue. Normally, when
Ansible encounters an error, it will simply stop what it is doing
without running any handlers. With this feature, you can add the
pause module with a condition on it that triggers in unexpected
situations. This way the pause module will be ignored in a normal
situation; however, in unexpected circumstances, it will allow the
user to intervene and continue when it is safe to do so. The task
would look like this:

name: pause for unexpected conditions
pause: prompt="Unexpected OS"
when: ansible_os_family != "RedHat"

There are numerous uses of skipping actions; here are a few of them:

•	 Working around differences in operating systems
•	 Prompting a user and only then performing actions that they request
•	 Improving performance by avoiding a module that you know won't change

anything but may take a while to do so
•	 Refusing to alter systems that have a particular file present
•	 Checking if custom scripts have already been run

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Playbooks

[46]

Task delegation
Ansible, by default, runs its tasks all at once on the configured machine. This is great
when you have a whole bunch of separate machines to configure, or if each of your
machines is responsible for communicating its status to the other remote machines.
However, if you need to perform an action on a different host than the one Ansible is
operating on, you can use a delegation.

Ansible can be configured to run a task on a different host other than the one that
is being configured using the delegate_to key. The module will still run once
for every machine, but instead of running on the target machine, it will run on
the delegated host. The facts available will be the ones applicable to the current
host. Here, we show a playbook that will use the get_url option to download the
configuration from a bunch of web servers.

- name: Fetch configuration from all webservers
 hosts: webservers
 tasks:
 - name: Get config
 get_url:
 dest: "configs/{{ ansible_hostname }}"
 force: yes
 url: "http://{{ ansible_hostname }}/diagnostic/config"
 delegate_to: localhost

If you are delegating to the localhost, you can use a shortcut when defining the
action that automatically uses the local machine. If you define the key of the action
line as local_action, then the delegation to localhost is implied. If we were to
have used this in the previous example, it would be slightly shorter and will look
like this:

--- #1
- name: Fetch configuration from all webservers #2
 hosts: webservers #3
 tasks: #4
 - name: Get config #5
 local_action: get_url dest=configs/{{ ansible_hostname
 }}.cfg url=http://{{ ansible_hostname
 }}/diagnostic/config #6

Delegation is not limited to the local machine. You can delegate to any host that is in
the inventory. Some other reasons why you might want to delegate are:

•	 Removing a host from a load balancer before deployment
•	 Changing DNS to direct traffic away from a server you are about to change

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[47]

•	 Creating an iSCSI volume on a storage device
•	 Using an external server to check whether access outside the network works

Extra variables
You may have seen in our template example in the previous chapter that we used a
variable named group_names. This is one of the magic variables that are provided
by Ansible itself. At the time of writing, there are seven such variables, which are
described in the upcoming sections.

The hostvars variable
The hostvars variable allows you to retrieve variables of all the hosts that the
current play has dealt with. If the setup module hasn't yet been run on that managed
host in the current play, only its variables will be available. You can access it like you
would access other complex variables, such as ${hostvars.hostname.fact}, so to
get the Linux distribution running on a server named ns1, it would be ${hostvars.
ns1.ansible_distribution}. The following example sets a variable called zone
master to the server named ns1. It then calls the template module, which would use
this to set the masters for each zone.

- name: Setup DNS Servers
 hosts: allnameservers
 tasks:
 - name: Install BIND
 yum:
 name: named
 state: installed

- name: Setup Slaves
 hosts: slavenamesservers
 tasks:
 - name: Get the masters IP
 set_fact:
 dns_master: "{{ hostvars.ns1.ansible_default_ipv4.address }}"

 - name: Configure BIND
 template:

 dest: /etc/named.conf
 src: templates/named.conf.j2

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Playbooks

[48]

Using hostvars, you can further abstract templates from
your environment. If you nest your variable calls, then instead
of placing an IP address in the variable section of the play, you
can add the hostname. To find the address of a machine named
in the the_machine variable you would use, {{ hostvars.
[the_machine].default_ipv4.address }}.

The groups variable
The groups variable contains a list of all hosts in the inventory grouped by the
inventory group. This lets you get access to all the hosts that you have configured.
This is potentially a very powerful tool. It allows you to iterate across a whole group
and for every host apply an action to the current machine.

- name: Configure the database
 hosts: dbservers
 user: root
 tasks:
 - name: Install mysql
 yum:
 name: "{{ item }}"
 state: installed
 with_items:
 - mysql-server
 - MySQL-python

 - name: Start mysql
 service:
 name: mysqld
 state: started
 enabled: true

 - name: Create a user for all app servers
 with_items: groups.appservers
 mysql_user:

 name: kate

 password: test

 host: "{{ hostvars.[item].ansible_eth0.ipv4.address }}"
 state: present

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[49]

The groups variable does not contain the actual hosts in
the group; it contains strings representing their names in
the inventory. This means you have to use nested variable
expansion to get to the hostvars variable, if needed.

You can even use this variable to create the known_hosts files for all of your
machines containing the host keys of all the other machines. This would allow
you to then SSH from one machine to another without confirming the identity
of the remote host. It would also handle removing machines when they leave
service or updating them when they are replaced. The following is a template for
a known_hosts file that does this:

{% for host in groups['all'] %}
{{ hostvars[host]['ansible_hostname'] }}
{{ hostvars[host]['ansible_ssh_host_key_rsa_public'] }}
{% endfor %}

The playbook that uses this template would look like this:

hosts: all
tasks:
- name: Setup known hosts
 hosts: all
 tasks:
 - name: Create known_hosts
 template:

 src: templates/known_hosts.j2
 dest: /etc/ssh/ssh_known_hosts

 owner: root

 group: root
 mode: 0644

The group_names variable
The group_names variable contains a list of strings with the names of all the
groups the current host is in. This is not only useful for debugging, but also for
conditionals detecting group membership. This was used in the last chapter to
set up a nameserver.

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Playbooks

[50]

This variable is mostly useful for skipping a task or in a template as a condition.
For instance, if you had two configurations for the SSH daemon, one secure and one
less secure, but you only wanted the secure configuration on the machines in the
secure group, you would do it like this:

- name: Setup SSH
 hosts: sshservers
 tasks:
 - name: For secure machines
 set_fact:
 sshconfig: files/ssh/sshd_config_secure
 when: "'secure' in group_names"

 - name: For non-secure machines
 set_fact:
 sshconfig: files/ssh/sshd_config_default
 when: "'secure' not in group_names"

 - name: Copy over the config
 copy:

 src: "{{ sshconfig }}"

 dest: /tmp/sshd_config

In the previous example, we used the set_fact module to set the
fact for each case, and then used the copy module. We could have
used the copy module in place of the set_facts modules and
used one fewer task. The reason this was done is that the set_fact
module runs locally and the copy module runs remotely. When you
use the set_facts module first and only call the copy module
once, the copies are made on all the machines in parallel. If you used
two copy modules with conditions, then each would execute on the
relevant machines separately. Since copy is the longer task of the
two, it benefits the most from running in parallel.

The inventory_hostname variable
The inventory_hostname variable stores the hostname of the server as recorded in
the inventory. You should use this if you have chosen not to run the setup module
on the current host, or if for various reasons, the value detected by the setup module
is not correct. This is useful when you are doing the initial setup of the machine and
changing the hostname.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[51]

The inventory_hostname_short variable
The inventory_hostname_short variable is the same as the previous variable;
however, it only includes the characters up to the first dot. So for host.example.com,
it would return host.

The inventory_dir variable
The inventory_dir variable is the path name of the directory containing the
inventory file.

The inventory_file variable
The inventory_file variable is the same as the previous one, except that it also
includes the filename.

Finding files with variables
All modules can take variables as part of their arguments by dereferencing them
with {{ and }}. You can use this to load a particular file based on a variable. For
example, you might want to select a different config file for NRPE (a Nagios check
daemon) based on the architecture in use. Here is how that would look:

- name: Configure NRPE for the right architecture
 hosts: ansibletest
 user: root
 tasks:
 - name: Copy in the correct NRPE config file
 copy:
 src: "files/nrpe.{{ ansible_architecture }}.conf"
 dest: "/etc/nagios/nrpe.cfg"

In the copy and the template modules, you can also configure Ansible to look for a
set of files, and it finds them using the first one. This lets you configure a file to look
for; if that file is not found, a second will be used, and so on until the end of the list
is reached. If the file is not found, then the module will fail. The feature is triggered
using the first_available_file key, and referencing {{ item }} in the action.
The following code is an example of this feature:

- name: Install an Apache config file
 hosts: ansibletest
 user: root

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Playbooks

[52]

 tasks:
 - name: Get the best match for the machine
 copy:
 dest: /etc/apache.conf
 src: "{{ item }}"
 first_available_file:
 - "files/apache/{{ ansible_os_family }}-{{ ansible_architecture
}}.cfg"
 - "files/apache/default-{{ ansible_architecture }}.cfg"
 - files/apache/default.cfg

Remember that you can run the setup module from the Ansible
command-line tool. This comes in handy when you are making
heavy use of variables in your playbooks or templates. To check
what facts will be available for a particular play, simply copy
the value of the host pattern and run the following command:
ansible [host pattern] -m setup

On a CentOS x86_64 machine, this configuration will first look for the
RedHat-x86_64.cfg file upon navigating through files/apache/. If that file does
not exist, it will look for the default-x86_64.cfg file upon navigating through
file/apache/, and finally if nothing exists, it'll try and use default.cfg.

Environment variables
Often, Unix commands take advantage of certain environment variables. Prevalent
examples of this are C makefiles, installers, and the AWS command-line tools.
Fortunately, Ansible makes this really easy. If you want to upload a file on the remote
machine to Amazon S3, you can set the Amazon access key as follows. You will also see
that we install EPEL so that we can install pip, and pip is used to install the AWS tools.

- name: Upload a remote file via S3
 hosts: ansibletest
 user: root
 tasks:
 - name: Setup EPEL
 command: >
 rpm -ivh http://download.fedoraproject.org/pub/epel/6/i386/
epel-release-6-8.noarch.rpm
 creates=/etc/yum.repos.d/epel.repo

 - name: Install pip

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[53]

 yum:
 name: python-pip
 state: installed

 - name: Install the AWS tools
 pip:
 name: awscli
 state: present

 - name: Upload the file
 shell: >
 aws s3 put-object
 --bucket=my-test-bucket
 --key={{ ansible_hostname }}/fstab
 --body=/etc/fstab
 --region=eu-west-1
 environment:
 AWS_ACCESS_KEY_ID: XXXXXXXXXXXXXXXXXXX
 AWS_SECRET_ACCESS_KEY: XXXXXXXXXXXXXXXXXXXXX

Internally, Ansible sets the environment variable into the Python
code; this means any module that already uses environment
variables can take advantage of the ones set here. If you write your
own modules, you should consider if certain arguments would be
better used as environment variables instead of arguments.

Some Ansible modules, such as get_url, yum, and apt, will also use environment
variables to set their proxy server. Some of the other situations where you might
want to set environment variables are as follows:

•	 Running application installers
•	 Adding extra items to the path when using the shell module
•	 Loading libraries from a place not included in the system library search path
•	 Using an LD_PRELOAD hack while running a module

External data lookups
Ansible introduced the lookup plugins in version 0.9. These plugins allow Ansible
to fetch data from outside sources. Ansible provides several plugins, but you can
also write your own. This really opens the doors and allows you to be flexible in
your configuration.

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Playbooks

[54]

Lookup plugins are written in Python and run on the controlling machine. They are
executed in two different ways: direct calls and with_* keys. Direct calls are useful
when you want to use them like you would use variables. Using the with_* keys
is useful when you want to use them as loops. In an earlier section, we covered
with_fileglob, which is an example of this.

In the next example, we use a lookup plugin directly to get the http_proxy value from
environment and send it through to the configured machine. This makes sure that the
machines we are configuring will use the same proxy server to download the file.

- name: Downloads a file using a proxy
 hosts: all
 tasks:
 - name: Download file
 get_url:
 dest: /var/tmp/file.tar.gz
 url: http://server/file.tar.gz
 environment:
 http_proxy: "{{ lookup('env', 'http_proxy') }}"

You can also use lookup plugins in the variable section. This
doesn't immediately lookup the result and put it in the variable
as you might assume; instead, it stores it as a macro and looks it
up every time you use it. This is good to know if you are using
something, the value of which might change over time.

Using lookup plugins in the with_* form will allow you to iterate over things you
wouldn't normally be able to. You can use any plugin like this, but ones that return
a list are most useful. In the following code, we show how to dynamically register a
webapp farm.

- name: Registers the app server farm
 hosts: localhost
 connection: local
 vars:
 hostcount: 5
 tasks:
 - name: Register the webapp farm
 local_action: add_host name={{ item }} groupname=webapp
 with_sequence: start=1 end={{ hostcount }} format=webapp%02x

If you were using this example, you would append a task to create each as a virtual
machine and then a new play to configure each of them.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[55]

Situations where lookup plugins are useful are as follows:

•	 Copying a whole directory of Apache config to a conf.d style directory
•	 Using environment variables to adjust what the playbooks does
•	 Getting configuration from DNS TXT records
•	 Fetching the output of a command into a variable

Storing results
Almost every module outputs something, even the debug module. Most of the
time, the only variable used is the one named changed. The changed variable helps
Ansible decide whether to run handlers or not and which color to print the output
in. However, if you wish to, you can store the returned values and use them later in
the playbook. In this example, we look at the mode in the /tmp directory and create a
new directory named /tmp/subtmp with the same mode as shown here.

- name: Using register
 hosts: ansibletest
 user: root
 tasks:
 - name: Get /tmp info
 file:
 dest: /tmp
 state: directory
 register: tmp

 - name: Set mode on /var/tmp
 file:
 dest: /tmp/subtmp
 mode: "{{ tmp.mode }}"
 state: directory

Some modules, such as the file module in the previous example, can be configured
to simply give information. By combining this with the register feature, you can
create playbooks that can examine the environment and calculate how to proceed.

Combining the register feature and the set_fact module
allows you to perform data processing on data you receive
back from the modules. This allows you to compute values
and perform data processing on these values. This makes
your playbooks even smarter and more flexible than ever.

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Playbooks

[56]

Register allows you to make your own facts about hosts from modules already
available to you. This can be useful in many different circumstances:

•	 Getting a list of files in a remote directory and downloading them all
with fetch

•	 Running a task when a previous task changes, before the handlers run
•	 Getting the contents of the remote host SSH key and building a

known_hosts file

Processing data
Ansible uses Jinja2 filters to allow you to transform data in ways that aren't possible
with basic templates. We use filters when the data available to us in our playbooks
is not in the format we want, or require further complex processing before it can be
used with modules or templates. Filters can be used anywhere we would normally
use a variable, such as in templates, as arguments to modules, and in conditionals.
Filters are used by providing the variable name, a pipe character, and then the
filter name. We can use multiple filter names separated with pipe characters to use
multiple pipes, which are then applied left to right. Here is an example where we
ensure that all users are created with lowercase usernames:

- name: Create user accounts
 hosts: all
 vars:
 users:
 tasks:
 - name: Create accounts
 user: name={{ item|lower }} state=present
 with_items:
 - Fred
 - John
 - DanielH

Here are a few popular filters that you may find useful:

Filter Description
min When the argument is a list it returns only the smallest value.
max When the argument is a list it returns only the largest value.
random When the argument is a list it picks a random item from the list.
changed When used on a variable created with the register keyword, it returns

true if the task changed anything; otherwise, it returns false.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[57]

Filter Description
failed When used on a variable created with the register keyword, it

returns true if the task failed; otherwise, it returns false.
skipped When used on a variable created with the register keyword, it returns

true if the task changed anything; otherwise, it returns false.
default(X) If the variable does not exist, then the value of X will be used instead.
unique When the argument is a list, return a list without any duplicate items.
b64decode Convert the base64 encoded string in the variable to its binary

representation. This is useful with the slurp modules, as it returns its
data as a base64 encoded string.

replace(X, Y) Return a copy of the string with any occurrences of X replaced by Y.
join(X) When the variable is a list, return a string with all the entries

separated by X.

Debugging playbooks
There are a few ways in which you can debug a playbook. Ansible includes both
a verbose mode and a debug module specifically for debugging. You can also use
modules such as fetch and get_url for help. These debugging techniques can also
be used to examine how modules behave when you wish to learn how to use them.

The debug module
Using the debug module is really quite simple. It takes two optional arguments, msg
and fail.msg to set the message that will be printed by the module and fail, if
set to yes, indicates a failure to Ansible, which will cause it to stop processing the
playbook for that host. We used this module earlier in the skipping modules section
to bail out of a playbook if the operating system was not recognized.

In the following example, we will show how to use the debug module to list all the
interfaces available on the machine:

- name: Demonstrate the debug module
 hosts: ansibletest
 user: root
 vars:
 hostcount: 5
 tasks:
 - name: Print interface
 debug:
 msg: "{{ item }}"
 with_items: ansible_interfaces

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Playbooks

[58]

The preceding code gives the following output:

PLAY [Demonstrate the debug module] *********************************

GATHERING FACTS ***
ok: [ansibletest]

TASK: [Print interface] ***
ok: [ansibletest] => (item=lo) => {"item": "lo", "msg": "lo"}
ok: [ansibletest] => (item=eth0) => {"item": "eth0", "msg": "eth0"}

PLAY RECAP **
ansibletest : ok=2 changed=0 unreachable=0
failed=0

As you can see, the debug module is easy to use to see the current value of a variable
during the play.

The verbose mode
Your other option for debugging is the verbose option. When running Ansible
with verbose, it prints out all the values that were returned by each module after it
runs. This is especially useful if you are using the register keyword introduced
in the previous section. To run ansible-playbook in verbose mode, simply add
--verbose to your command line as follows:

ansible-playbook --verbose playbook.yml

The check mode
In addition to the verbose mode, Ansible also includes a check mode and a diff
mode. You can use the check mode by adding --check to the command line, and
--diff to use the diff mode. The check mode instructs Ansible to walk through the
play without actually making any changes to remote systems. This allows you to
obtain a listing of the changes that Ansible plans to make to the configured system.

It is important here to note that the check mode of Ansible is
not perfect. Any modules that do not implement the check
feature are skipped. Additionally, if a module is skipped that
provides more variables, or the variables depend on a module
actually changing something (such as file size), then they will
not be available. This is an obvious limitation when using the
command or shell modules

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[59]

The diff mode shows the changes that are made by the template module. This
limitation is because the template file only works with text files. If you were to
provide a diff of a binary file from the copy module, the result would almost be
unreadable. The diff mode also works with the check mode to show you the planned
changes that were not made due to being in check mode.

The pause module
Another technique is to use the pause module to pause the playbook while you
examine the configured machine as it runs. This way, you can see changes that the
modules have made at the current position in the play, and then watch while it
continues with the rest of the play.

Summary
In this chapter, we explored the more advanced details of writing playbooks. You
should now be able to use features such as delegation, looping, conditionals, and fact
registration to make your plays much easier to maintain and edit. We also looked at
how to access information from other hosts, configure the environment for a module,
and gather data from external sources. Finally, we covered some techniques for
debugging plays that are not behaving as expected.

In the next chapter, we will be covering how to use Ansible in a larger environment.
It will include methods for improving the performance of your playbooks that might
be taking a long time to execute. We will also cover a few more features that make
plays maintainable, particularly splitting them into many parts by purpose.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[61]

Larger Projects
Until now we have been looking at single plays in one playbook file. This approach
will work for simple infrastructures, or when using Ansible as a simple deployment
mechanism. However, if you have a large and complicated infrastructure, then you
will need to take actions to prevent things from going out of control. This chapter
will include the following topics:

•	 Separating your playbooks into different files, and including them from some
other location

•	 Using roles to include multiple files that perform a similar function
•	 Methods for increasing the speed at which Ansible configures your machines

Includes
One of the first issues you will face with a complex infrastructure is that your
playbooks will rapidly increase in size. Large playbooks can become difficult to read
and maintain. Ansible allows you to combat this problem by way of includes.

Includes allow you to split your plays into multiple sections. You can then include
each section from other plays. This allows you to have several different parts built
for a different purpose, all included in a main play.

There are four types of includes, namely, variable includes, playbook includes, task
includes, and handler includes. Including variables from an external vars_file
files has been discussed already in Chapter 2, Simple Playbooks. The following is a
description of what each includes does:

•	 Variable includes: They allow you to put your variables in external
YAML files

•	 Playbook includes: They are used to include plays from other files in
a single play

www.it-ebooks.info

http://www.it-ebooks.info/

Larger Projects

[62]

•	 Task includes: They let you put common tasks in other files and include
them wherever required

•	 Handler includes: They let you put all your handlers at one place

We will be looking at these includes in the following section; however, including
variables from an external vars_file files has been discussed already in Chapter 2,
Simple Playbooks, so we will not be discussing it in detail.

Task includes
Task includes can be used when you have a lot of common tasks that will be
repeated. For example, you may have a set of tasks that removes a machine from
monitoring and a load balancer before you can configure it. You can put these tasks
in a separate YAML file, and then include them from your main task.

Task includes inherit the facts from the play they are included from. You can also
provide your own variables, which are passed into the task and are available for use.

Finally, task includes can have conditionals applied to them. If you do this,
conditionals will separately be added to each included task by Ansible automatically.
The tasks are all still included. In most cases, this is not an important distinction;
however, in circumstances where variables may change, it is.

The file to include as a task includes contains a list of tasks. If you assume the
existence of any variables, hosts, or groups, then you should state them in comments
at the top of the file. This makes it easier for people who wish to reuse the file later.

So, if you wanted to create a bunch of users and set up their environment with their
public keys, you would split out the tasks that do a single user to one file. This file
will look similar to the following code:

Requires a user variable to specify user to setup
- name: Create user account
 user:
 name: "{{ user }}"
 state: present

- name: Make user SSH config dir
 file:
 path: "/home/{{ user }}/.ssh"
 owner: "{{ user }}"
 group: "{{ user }}"
 mode: 0600
 state: directory

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[63]

- name: Copy in public key
 copy:
 src: "keys/{{ user }}.pub"
 dest: "/home/{{ user }}/.ssh/authorized_keys"
 mode: 0600
 owner: "{{ user }}"
 group: "{{ user }}"

We expect that a variable named user will be passed to us, and that their public
key will be in the keys directory. The account is created, the ssh config directory
is made, and finally we can copy this in their public key. The easiest way to use this
config file would be to include it with the with_items keyword you learned about
in Chapter 3, Advanced Playbooks. This will look similar to the following code:

- hosts: ansibletest
 user: root
 tasks:
 - include: usersetup.yml user={{ item }}
 with_items:
 - mal
 - dan
 - kate

Handler includes
When writing Ansible playbooks, you will constantly find yourself reusing the same
handlers multiple times. For instance, a handler used to restart MySQL is going to
look the same everywhere. To make this easier, Ansible allows you to include other
files in the handlers section. Handler includes look the same as task includes. You
should make sure to include a name on each of your handlers; otherwise, you will
not be able to refer to them easily in your tasks. A handler includes file looks similar
to the following code:

- name: config sendmail
 command: make -C /etc/mail
 notify: reload sendmail

- name: config aliases
 command: newaliases
 notify: reload sendmail

- name: reload sendmail
 service:

www.it-ebooks.info

http://www.it-ebooks.info/

Larger Projects

[64]

 name: sendmail
 state: reloaded

- name: restart sendmail
 service:
 name: sendmail
 state: restarted

This file provides several common tasks that you would want to handle after
configuring sendmail. By including the following handlers in their own files, you
can easily reuse them whenever you need to change the sendmail configuration:

•	 The first handler regenerates the sendmail database's config file and
triggers a reload file of sendmail later

•	 The second handler initializes the aliases database, and also schedules a
reload file of sendmail

•	 The third handler reloads sendmail; it may be triggered by the previous two
jobs, or it may be triggered directly from a task

•	 The fourth handler restarts sendmail when triggered; this is useful if you
upgrade sendmail to a new version

Handlers can trigger other handlers provided they only trigger
the ones specified later, instead of the triggered ones. This
means you can set up a series of cascading handlers that call
each other. This saves you from having long lists of handlers in
the notify section of tasks.

Using the preceding handler file is easy now. We simply need to remember that if we
change a sendmail configuration file, then we should trigger config sendmail, and
if we change the aliases file, we should trigger config aliases. The following
code shows us an example of this:

 hosts: mailers
 tasks:
 - name: update sendmail
 yum:
 name: sendmail
 state: latest
 notify: restart sendmail

 - name: configure sendmail
 template:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[65]

 src: templates/sendmail.mc.j2
 dest: /etc/mail/sendmail.mc
 notify: config sendmail

 handlers:
 - include: sendmailhandlers.yml

This playbook makes sure sendmail is installed. If it isn't installed, or if it isn't
running the latest version, then it installs it or updates it. After it is updated, it
schedules a restart so that we can be confident that the latest version will be running
once the playbook is done. In the next step, we replace the sendmail configuration file
with our template. If the config file was changed by the template, then the sendmail
configuration files will be regenerated, and finally sendmail will be reloaded.

Playbook includes
Playbook includes should be used when you want to include a whole set of tasks
designated for a set of machines. For example, you may have a play that gathers
the host keys of several machines and builds a known_hosts file to copy to all the
machines.

While task includes allows you to include tasks, playbook includes allows you to
include whole plays. This allows you to select the hosts you wish to run on, and
provide handlers for notify events. Because you are including whole playbook files,
you can also include multiple plays.

Playbook includes allows you to embed fully self-contained files. It is for this reason
that you should provide any variables that it requires. If they depend on any particular
set of hosts or groups, this should be noted in a comment at the top of the file.

This is handy when you wish to run multiple different actions at once. For example,
let's say we have a playbook that switches to our DR site, named drfailover.
yml, another named upgradeapp.yml that upgrades the app, another named
drfailback.yml that fails back, and finally drupgrade.yml. All these playbooks
might be valid to use separately; however, when performing a site upgrade, you
will probably want to perform them all at once. You can do this as shown in the
following code:

- include "drfailover.yml"
- include "upgradeapp.yml"
- include "drfailback.yml"

- name: Notify management
 hosts: local

www.it-ebooks.info

http://www.it-ebooks.info/

Larger Projects

[66]

 tasks:
 - mail
 to: "mgmt-team@example.com"
 msg: 'The application has been upgraded and is now live'

- include "drupgrade.yml"

As you can see, you can put full plays in the playbooks that you are including other
playbooks into.

Roles
If your playbooks start expanding beyond what includes can help you solve, or you
start gathering a large number of templates, you may want to use roles. Roles in
Ansible allow you to group files together in a defined structure. They are essentially
an extension to includes that handles a few things automatically, and this helps you
organize them inside your repository.

Roles allow you to place your variables, files, tasks, templates, and handlers in a
folder, and then easily include them. You can also include other roles from within
roles, which effectively creates a tree of dependencies. Similar to task includes, they
can have variables passed to them. Using these features, you should be able to build
self-contained roles that are easy to share with others.

Roles are commonly set up to manage services provided by machines, but they
can also be daemons, options, or simply characteristics. Things you may want to
configure in a role are as follows:

•	 Web servers, such as Nginx or Apache
•	 Messages of the day customized for the security level of the machine
•	 Database servers running PostgreSQL or MySQL

To manage roles in Ansible, perform the following steps:

1.	 Create a folder named roles with your playbooks.
2.	 In the roles folder, make a folder for each role that you would like.
3.	 In the folder for each role, make folders named files, handlers, meta,

tasks, templates, and finally vars. If you aren't going to use all these,
you can leave out the ones you don't need. Ansible will silently ignore any
missing files or directories when using roles.

4.	 In your playbooks, add the keyword roles followed by a list of roles that you
would like to apply to the hosts.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[67]

5.	 For example, if you had the common, apache, website1, and website2 roles,
your directory structure would look similar to the following example. The
site.yml file is for reconfiguring the entire site, and the webservers1.yml
and webservers2.yml files are for configuring each web server farm.

www.it-ebooks.info

http://www.it-ebooks.info/

Larger Projects

[68]

The following file is what could be in website1.yml. It shows a playbook that
applies the common, apache, and website1 roles to the website1 group in the
inventory. The website1 role is included using a more verbose format that allows us
to pass variables to the role, as follows:

- name: Setup servers for website1.example.com
 hosts: website1
 roles:
 - common
 - apache
 - { role: website1, port: 80 }

For the role named common, Ansible will then try to load roles/common/tasks/
main.yml as a task include, roles/common/handlers/main.yml as a handler
include, and roles/common/vars/main.yml as a variable file include. If all of these
files are missing, Ansible will throw an error; however, if one of the files exists, then
the others, if missing, will be ignored. The following directories are used by a default
install of Ansible (other directories may be used by different modules):

Directory Description
tasks The tasks folder should contain a main.yml file, which should include

a list of the tasks for this role. Any task includes that are contained in
these roles will look for their files in this folder also. This allows you to
split a large number of tasks into separate files, and use other features of
task includes.

files The files folder is the default location for files in the roles that are used
by the copy or the script module.

templates The templates directory is the location where the template module will
automatically look for the jinja2 templates included in the roles.

handlers The handlers folder should contain a main.yml file, which specifies the
handlers for the roles, and any includes in that folder will also look for the
files in the same location.

vars The vars folder should contain a main.yml file, which contains the
variables for this role.

meta The meta folder should contain a main.yml file. This file can contain
settings for the role, and a list of its dependencies. This feature is available
only in Ansible 1.3 and above.

default You should use the default folder if you are expecting variables to be
sent to this role, and you want to make them optional. A main.yml file
in this folder is read, to get the initial values for variables that can be
overridden by variables, which are passed from the playbook calling the
role. This feature is only available in Ansible 1.3 and above.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[69]

When using roles, the behavior of the copy, the template, and the script modules is
slightly altered. In addition to searching for files by looking from the directory in
which the playbook file is located, Ansible will also look for the files in the location
of the role. For example, if you are using a role named common, these modules will
change to the following behavior:

•	 The copy module will look for files in roles/common/files.
•	 The template module will first look for templates in roles/common/

templates.
•	 The script module will first look for files in roles/common/files.
•	 The other modules might decide to look for their data in other folders inside

roles/common/. The documentation for modules can be retrieved using
ansible-doc, as was discussed in the Module help section of Chapter 1, Getting
Started with Ansible.

Role metadata
Using role metadata allows us to specify that our role depends on other roles. For
example, if the application you are deploying needs to send an e-mail, your role
could depend on a Postfix role. This would mean that before the application is set up
and installed, Postfix will be installed and set up.

The meta/main.yml file will look similar to the following code:

allow_duplicates: no
dependencies:
 - apache

The allow_duplicates line is set to no, which is the default. If you set this to no,
Ansible will not run a role the second time, if it is included twice with the same
arguments. If you set it to yes, it will repeat the role even if it has run before. You can
leave it off instead of setting it to no.

Dependencies are specified in the same format as roles. This means you can pass
variables here; either static values or variables that are passed to the current role.

www.it-ebooks.info

http://www.it-ebooks.info/

Larger Projects

[70]

Role defaults
The second feature included with Ansible 1.3 is variable default values. If you place
a main.yml file in the defaults directory for the role, these variables will be read into
the role; however, they can be overridden by variables in the vars/main.yml file, or
the variables that are passed to the role when it is included. This allows you to make
passing variables to the role optional. These files look exactly like other variable files.
For example, if you used a variable named port in your role, and you want to default
it to port 80, your defaults/main.yml file will look similar to the following code:

port: 80

Speeding things up
As you add more and more machines and services to your Ansible configuration,
you will find things getting slower and slower. Fortunately, there are several tricks
you can use to make Ansible work on a bigger scale.

Provisioning
Ansible isn't just limited to being able to configure our machines; we can also
use it to create the machines that we will be configuring. We are also not limited
to just making the machines to be configured, we can also make networks, load
balancers, DNS entries, or even your whole infrastructure. You can even have this
automatically happen before you provision the machine by using the group,
group_by and add_host modules.

In the following example, we use Google Compute to create two machines, and then
install and start MySQL server on them:

- name: Setup MySQL Infrastructure
 hosts: localhost
 connection: local
 tasks:
 - name: Start GCE Nodes
 gce:
 image: centos-6
 name: "mysql-{{ item }}"
 tags: mysql
 zone: us-central1-a
 with_sequence: count=2
 register: nodes

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[71]

 when: '"mysql-{{ item }}" not in groups.all'

 - name: Wait for the nodes to start
 wait_for:
 host: "{{ item.instance_data[0].public_ip }}"
 port: 22
 with_items: nodes.results
 when: not item|skipped

 - name: Register the hosts in a group
 add_host:
 name: "{{ item.instance_data[0].name }}"
 ansible_ssh_host: "{{ item.instance_data[0].public_ip }}"
 groups: "tag_mysql"
 with_items: nodes.results
 when: not item|skipped

- name: Setup MySQL
 hosts: tag_mysql
 tasks:
 - name: Install MySQL
 yum:
 name: mysql
 state: present

 - name: Start MySQL
 service:
 name: mysqld
 state: started
 enabled: yes

Tags
Ansible tags are features that allow you to select the parts of a playbook that you
need to run, and which should be skipped. While Ansible modules are idempotent
and will automatically skip if there are no changes, this often requires a connection
to the remote hosts. The yum module is often quite slow in determining whether a
module is the latest, as it will need to refresh all the repositories.

If you know you don't need certain actions to be run, you can select to run only those
tasks that have been tagged with a particular tag. This doesn't even try to run the
tasks, it simply skips over it. This will save time on almost all the modules even if
there is nothing to be done.

www.it-ebooks.info

http://www.it-ebooks.info/

Larger Projects

[72]

Let's say you have a machine that has a large number of shell accounts, but also
several services set up to run on it. Now, imagine that a single user's SSH key has
been compromised and needs to be removed immediately. Instead of running the
entire playbook, or rewriting the playbooks to only include the steps necessary to
remove that key, you could simply run the existing playbooks with the SSH keys
tag, and it would only run the steps necessary to copy out the new keys, instantly
skipping anything else.

This is particularly useful if you have a playbook with playbook includes in it that
covers your whole infrastructure. With this setup, you can quickly deploy security
patches, change passwords, and revoke keys across your entire infrastructure as
quickly as possible.

Tagging tasks is really easy; simply add a key named tag, and set its value to a list of
the tags you want to give it. The following code shows us how to do this:

- name: Install and setup our webservers
 hosts: webservers
 tasks:
 - name: install latest software
 yum
 name: "{{ item }}"
 state: latest
 notify: restart apache
 tags:
 - patch
 with_items:
 - httpd
 - webalizer

 - name: Create subdirectories
 file
 dest: "/var/www/html/{{ item }}"
 state: directory
 mode: 755
 owner: apache
 group: apache
 tags:
 - deploy
 with_items:
 - pub

 - name: Copy in web files
 copy

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[73]

 src: "website/{{ item }}"
 dest: "/var/www/html/{{ item }}"
 mode: 0755
 owner: apache
 group: apache
 tags:
 - deploy
 with_items:
 - index.html
 - logo.png
 - style.css
 - app.js
 - pub/index.html

 - name: Copy webserver config
 tags:
 - deploy
 - config
 copy
 src: website/httpd.conf
 dest: /etc/httpd/conf/httpd.conf
 mode: 0644
 owner: root
 group: root
 notify: reload apache

 - name: set apache to start on startup
 service
 name: httpd
 state: started
 enabled: yes

 handlers:
 - name: reload apache
 service: name=httpd state=reloaded

 - name: restart apache
 service: name=httpd state=restarted

This play defines the patch, deploy, and config tags. If you know which operation
you wish to do in advance, you can run Ansible with the correct argument, only
running the operations you choose. If you don't supply a tag on the command line,
the default is to run every task. For example, if you want Ansible to only run the
tasks tagged as deploy, you will run the following command:

$ ansible-playbook webservers.yml --tags deploy

www.it-ebooks.info

http://www.it-ebooks.info/

Larger Projects

[74]

In addition to working on discrete tasks, tags are also available to roles, which make
Ansible apply only the roles for the tags that have been supplied on the command
line. You apply them similarly to the way they are applied to tasks. For example,
refer to the following code:

- hosts: website1
 roles:
 - common
 - { role: apache, tags: ["patch"] }
 - { role: website2, tags: ["deploy", "patch"] }

In the preceding code, the common role does not get any tags, and will not be run if
there are any tags applied. If the patch tag is applied, the apache and website2 roles
will be applied, but not common. If the deploy tag is applied; only the website2 tag
will be run. This will shorten the time required to patch servers or run deployments,
as the unnecessary steps will be completely skipped.

Ansible's pull mode
Ansible includes a pull mode that can drastically improve the scalability of your
playbooks. So far we have only covered using Ansible to configure another machine
over SSH. This is a contrast to Ansible's pull mode, which runs on the host that you
wish to configure. Since ansible-pull runs on the machine that it is configuring,
it doesn't need to make connections to other machines and runs much faster. In this
mode, you provide your configuration in a git repository that Ansible downloads
and uses to configure your machine.

You should use Ansible's pull mode in the following situations:

•	 Your node might not be available when configuring them, such as members
of auto-scaling server farms

•	 You have a large amount of machines to configure and even with large
values of forks, it would take a long time to configure them all

•	 You want machines to update their configuration automatically when the
repository changes

•	 You want to run Ansible on a machine that may not have network access yet,
such as in a kick start post install

However, the pull mode does have the following disadvantages that make it
unsuitable for certain circumstances:

•	 To connect to other machines and gather variables, or to copy a file, you need
to have credentials on the managed nodes

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[75]

•	 You need to co-ordinate the running of the playbook across a server farm; for
example, if you could only take three servers offline at a time

•	 The servers are behind strict firewalls that don't allow incoming SSH
connections from the nodes you used to configure them for Ansible

The pull mode doesn't require anything special in your playbooks, but it does
require some setup on the nodes you want configured. In some circumstances, you
can do this using Ansible's normal push mode. Here is a small play to setup pull
mode on a machine:

- name: Ansible Pull Mode
 hosts: pullhosts
 tasks:
 - name: Setup EPEL
 command: "rpm -ivh
 http://download.fedoraproject.org/pub/epel/6/i386/epel-
release-6-8.noarch.rpm"
 args:
 creates=/etc/yum.repos.d/epel.repo

 - name: Install Ansible + Dependencies
 yum:
 name: "{{ item }}"
 state: latest
 enablerepo: epel
 with_items:
 - ansible
 - git-core

 - name: Make directory to put downloaded playbooks in
 file:
 state: directory
 path: /opt/ansiblepull

 - name: Setup cron
 cron:
 name: "ansible-pull"
 user: root
 minute: "*/5"
 state: present
 job: "ansible-pull -U
https://git.int.example.com.com/gitrepos/ansiblepull.git
 -D /opt/ansiblepull {{ inventory_hostname_short }}.yml"

www.it-ebooks.info

http://www.it-ebooks.info/

Larger Projects

[76]

In this example, we performed the following steps:

1.	 First we installed and set up EPEL. This is a repository with extra software
for CentOS. Ansible is available in the EPEL repository.

2.	 Next we installed Ansible, making sure to enable the EPEL repository.
3.	 Then we created a directory for Ansible's pull mode to put the playbooks in.

Keeping these files around means you don't need to download the whole git
repository all the time; only updates are required.

4.	 Finally we set up a cron job that will try to run the ansible-pull mode
config every five minutes.

The preceding code downloads the repository off an internal
HTTPS git server. If you want to download the repository
instead of SSH, you will need to add a step to install SSH keys,
or generate keys and copy them to the git machine.

Storing secrets
Eventually, you will need to include sensitive data in your Ansible recipes. All the
recipes that we have discussed so far have to be stored on the disk in plain text; if
you are also storing it in source control, then third parties may even have access to
this data. This is risky and may be in violation of your corporate policies.

This can be avoided using Ansible vaults. Vaults are files that are encrypted and can
be decrypted by Ansible transparently. You can use them for includes, variable files,
tasks lists in roles and any other YAML formatted file that Ansible uses. You can also
use it with both JSON and YAML files included with the -e command-line argument
to ansible-playbook. Vault files are managed with the ansible-vault command and
can be used as if they were not encrypted at all.

The ansible-vault command has several modes, which are given as the first
argument. This table describes the modes:

Mode Action
Create This starts your default editor to create a new encrypted file
Encrypt This encrypts an existing file, turning it into a vault
Edit This edits a vault allowing you to change the content
Rekey This changes the password that is used to encrypt the vault
Decrypt This decrypts the vault turning it back into a regular file

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[77]

For example, to create a new variable file for your staging environment you
would run:

$ ansible-vault create vars/staging.yml

This command will prompt you for a password, ask you to confirm it, and then open
your editor so that you can add the content; finally, the encrypted content will be
saved in vars/staging.yml.

When using a vault file, you need to provide the password so that they can be
decrypted. This can be done in one of three ways. You can give the --ask-vault-
pass argument to Ansible, which will cause Ansible to prompt for the password
every time it starts. You can also use the --vault-password-file argument, which
points to a file containing the password. Finally, you can add vault_password_file
to the ansible.cfg file to automatically make Ansible use the vault password file for
every command. It is important to note that only one password can be supplied for
each Ansible run, so you can't include several different files with different passwords.

In order to have Ansible prompt for a password to run a playbook that is encrypted,
you will do the following:

$ ansible-playbook --ask-vault-pass encrypted.yml

The password file can also be an executable. To print to the
screen print to standard error, to read from the user you can
use stdin as usual and finally the script needs to print the
password to stdout before it exits.

Summary
In this chapter, we have covered the techniques required when moving from a
simple setup to a larger deployment. We discussed how to separate your playbook
into multiple parts using includes. We then looked at how we can package
related includes and automatically include them all at once using roles. Finally,
we discussed the pull mode, which allows you to automate the deployment of
playbooks on the remote node itself.

In the next chapter, we will cover writing your own modules. We start this by
building a simple module using bash scripting. We then look at how Ansible
searches for modules, and how to make it find your own custom ones. Then, we take
a look at how you can use Python to write more advanced modules using features
that Ansible provides. Finally we will write a script that configures Ansible to pull its
inventory from an external source.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[79]

Custom Modules
Until now we have been working solely with the tools provided to us by Ansible.
This does afford us a lot of power, and make many things possible. However if you
have something particularly complex or if you find yourself using the script module
a lot, you will probably want to learn how to extend Ansible.

In this chapter, you will learn the following topics:

•	 How to write modules in Bash scripting or Python
•	 Using the custom modules that you have developed
•	 Writing a script to use an external data source as an inventory

Often when you approach something complex in Ansible, you write a script module.
The issue with script modules is that you can't process their output, or trigger
handlers based on their output easily. So, although the script module works in some
cases, using a module can be better.

Use a module instead of writing a script when:

•	 You don't want to run the script every single time
•	 You need to process the output
•	 Your script needs to make facts
•	 You need to send complex variables as arguments

If you want to start writing modules, you should check out the Ansible repository.
If you want your module to work with a particular version, you should also switch
to that version to ensure compatibility. The following commands will set you up to
develop modules for Ansible 1.3.0.

$ git clone (https://github.com/ansible/ansible.git)

$ cd ansible

$ git checkout v1.3.0

$ chmod +x hacking/test-module

www.it-ebooks.info

http://www.it-ebooks.info/

Custom Modules

[80]

Checking out the Ansible code gives you access to a handy script that we will use
later to test our modules. We will also make this script executable in anticipation of
its use later in the chapter.

Writing a module in Bash
Ansible allows you to write modules in any language that you prefer. Although
most modules in Ansible work with JSON, you are allowed to use shortcuts if you
don't have any JSON parsing facilities available. Ansible will hand you arguments
in their original key value forms, if they were provided in that format. If complex
arguments are provided, you will receive JSON-encoded data. You could parse this
using something like jsawk (https://github.com/micha/jsawk) or jq (http://
stedolan.github.io/jq/), but only if they are installed on your remote machine.

Ansible already has a module that lets you change the hostname of a system, but
it only works with systemd-based systems. So let's write one that works with the
standard hostname command. We will start just printing the current hostname and
then expand the script from there. Here is what that simple module looks like:

#!/bin/bash

HOSTNAME="$(hostname)"

echo "hostname=${HOSTNAME}"

If you have written Bash scripts before, this should seem extremely basic. Essentially,
what we are doing is grabbing the hostname and printing it out in a key value form.
Now that we have written the first cut of the module, we should test it out.

To test the Ansible modules, we use the script that we ran the chmod command on
earlier. This command simply runs your module, records the output, and returns
it to you. It also shows how Ansible interpreted the output of the module. The
command that we will use looks like the following:

ansible/hacking/test-module -m ./hostname

The output of the previous command should look like this:

* module boilerplate substitution not requested in module, line
numbers will be unaltered

RAW OUTPUT
hostname=admin01.int.example.com

www.it-ebooks.info

https://github.com/micha/jsawk
http://stedolan.github.io/jq/
http://stedolan.github.io/jq/
http://www.it-ebooks.info/

Chapter 5

[81]

PARSED OUTPUT
{
 "hostname": "admin01.int.example.com"
}

Ignore the notice at the top; it does not apply to modules built with bash. You can see
the raw output that our script sent, which looks exactly the way we expected. The
test script also gives you the parsed output. In our example, we are using the short
output format and we can see here that Ansible is correctly interpreting it into the
JSON that it normally accepts from modules.

Let's expand out the module to allow setting the hostname. We should write it so
that it doesn't make any changes unless required, and lets Ansible know whether
changes were made or not. This is actually pretty simple for the small command that
we are writing. The new script should look something like this:

#!/bin/bash

set -e

This is potentially dangerous
source ${1}

OLDHOSTNAME="$(hostname)"
CHANGED="False"

if [! -z "$hostname" -a "${hostname}x" != "${OLDHOSTNAME}x"];
 then
 hostname $hostname
 OLDHOSTNAME="$hostname"
 CHANGED="True"
fi

echo "hostname=${OLDHOSTNAME} changed=${CHANGED}"
exit 0

The previous script works as follows:

1.	 We set Bash's exit on error mode, so that we don't have to deal with errors
from the hostname method. Bash will automatically exit on failure with its
exit code. This will signal Ansible that something went wrong.

2.	 We source the argument file. This file is passed from Ansible as the first
argument to the script. It contains the arguments that were sent to our module.
Because we are sourcing the file, this can be used to run arbitrary commands;
however, Ansible can already do this, so it's not that much of a security issue.

www.it-ebooks.info

http://www.it-ebooks.info/

Custom Modules

[82]

3.	 We collect the old hostname and default CHANGED to False. This allows us to
see whether our module needs to perform any changes.

4.	 We check whether we were sent a new hostname to set, and whether that
hostname is different from the one that is currently set.

5.	 If both these tests are true, we try to change the hostname, and set CHANGED
to True.

6.	 Finally, we output the results and exit. This includes the current hostname
and whether we made changes or not.

Changing the hostname on a Unix machine requires root privileges. So while testing
this script, you need to make sure to run it as the root user. Let's test this script using
sudo to see whether it works. This is the command you will use:

sudo ansible/hacking/test-module -m ./hostname
-a 'hostname=test.example.com'

If test.example.com is not the current hostname of the machine, you should get the
following output:

* module boilerplate substitution not requested in module, line
numbers will be unaltered

RAW OUTPUT
hostname=test.example.com changed=True

PARSED OUTPUT
{
 "changed": true,
 "hostname": "test.example.com"
}

As you can see, our output is being parsed correctly, and the module claims that
changes have been made to the system. You can check this yourself with the
hostname command. Now, run the module for the second time with the same
hostname. You should see an output that looks like this:

* module boilerplate substitution not requested in module, line
numbers will be unaltered

RAW OUTPUT
hostname=test.example.com changed=False

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[83]

PARSED OUTPUT
{
 "changed": false,
 "hostname": "test.example.com"
}

Again, we see that the output was parsed correctly. This time, however, the module
claims to not have made any changes, which is what we expect. You can also check
this with the hostname command.

Using a custom module
Now that we have written our very first module for Ansible, we should give it a go
in a playbook. Ansible looks at several places for its modules—first it looks at the
place specified in the library key in its config file (/etc/ansible/ansible.cfg),
next it will look at the location specified using the --module-path argument in the
command line, then it will look in the same directory as the playbook for a library
directory containing modules, and finally it will look in the library directory for
any roles that may be set.

Let's create a playbook that uses our new module and place it in a library directory
in the same place so that we can see it in action. Here is a playbook that uses the
hostname module:

- name: Test the hostname file
 hosts: testmachine
 tasks:
 - name: Set the hostname
 hostname: hostname=testmachine.example.com

Then create a directory named library in the same directory as the playbook file. Place
the hostname module inside the library. Your directory layout should look like this:

www.it-ebooks.info

http://www.it-ebooks.info/

Custom Modules

[84]

Now when you run the playbook, it will find the hostname module in the library
directory and execute it. You should see an output like this:

PLAY [Test the hostname file] ***************************************

GATHERING FACTS ***
ok: [ansibletest]

TASK: [Set the hostname] **
changed: [ansibletest]

PLAY RECAP **
ansibletest : ok=2 changed=1 unreachable=0
failed=0

Running it again should change the result from changed to ok. Congratulations! You
have now created and executed your very first module. This module is very simple
right now, but you can extend it to know about the hostname file, or other methods
to configure the hostname at boot time.

Writing modules in Python
All of the modules that are distributed with Ansible are written in Python. Because
Ansible is also written in Python, these modules can directly integrate with Ansible.
Here are a few reasons why you should write modules in Python:

•	 Modules written in Python can use boilerplate, which reduces the amount of
code required

•	 Python modules can provide documentation to be used by Ansible
•	 Arguments to your module are handled automatically
•	 Output is automatically converted to JSON for you
•	 Ansible upstream only accepts plugins using Python with the boilerplate

code included

You can still build Python modules without this integration by parsing the
arguments and outputting JSON yourself. However, with all the things you get for
free, it would be hard to make a case for it.

Let's build a Python module that lets us change the currently running init level of the
system. There is a Python module named pyutmp that will let us parse the utmp file.
Unfortunately, since Ansible modules have to be contained in a single file, we can't
use it unless we know it will be installed on the remote systems, so we will resort to
using the runlevel command and parsing its output. Setting the run level can be
done with the init command.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[85]

The first step is to figure out what arguments and features the module supports. For
the sake of simplicity, let's have our module only accept one argument. We'll use the
argument runlevel to get the run level the user wants to change to. To do this, we
will instantiate the AnsibleModule class with our data as follows:

module = AnsibleModule(
 argument_spec = dict(
 runlevel=dict(default=None, type='str')
)
)

Now we need to implement the actual guts of the module. The module object that we
created previously provides us with a few shortcuts. There are three shortcuts that
we will be using in the next step. As there are way too many methods to document
here, you can see the whole AnsibleModule class and all the available helper
functions in lib/ansible/module_common.py.

•	 run_command: This method is used to launch external commands and retrieve
the return code, the output from stdout, and also the output from stderr.

•	 exit_json: This method is used to return data to Ansible when the module
has completed successfully.

•	 fail_json: This method is used to signal a failure to Ansible, with an error
message and return code.

The following code actually manages the init level of the system comments to
explain what it does:

def main(): #1
 module = AnsibleModule(#2
 argument_spec = dict(#3
 runlevel=dict(default=None, type='str') #4
) #5
) #6

 # Ansible helps us run commands #7
 rc, out, err = module.run_command('/sbin/runlevel') #8
 if rc != 0: #9
 module.fail_json(msg="Could not determine current runlevel.",
 rc=rc, err=err) #10

 # Get the runlevel, exit if its not what we expect #11
 last_runlevel, cur_runlevel = out.split(' ', 1) #12
 cur_runlevel = cur_runlevel.rstrip() #13
 if len(cur_runlevel) > 1: #14

www.it-ebooks.info

http://www.it-ebooks.info/

Custom Modules

[86]

 module.fail_json(msg="Got unexpected output from runlevel.",
 rc=rc) #15

 # Do we need to change anything #16
 if module.params['runlevel'] is None or
 module.params['runlevel'] == cur_runlevel: #17
 module.exit_json(changed=False, runlevel=cur_runlevel) #18

 # Check if we are root #19
 uid = os.geteuid() #20
 if uid != 0: #21
 module.fail_json(msg="You need to be root to change the
 runlevel") #22

 # Attempt to change the runlevel #23
 rc, out, err = module.run_command('/sbin/init %s' %
 module.params['runlevel']) #24
 if rc != 0: #25
 module.fail_json(msg="Could not change runlevel.", rc=rc,
 err=err) #26

 # Tell ansible the results #27
 module.exit_json(changed=True, runlevel=cur_runlevel) #28

There is one final thing to add to the boilerplate to let Ansible know that it needs
to dynamically add the integration code into our module. This is the magic that
lets us use the AnsibleModule class and enables our tight integration with Ansible.
The boilerplate code needs to be placed right at the bottom of the file, with no code
afterwards. The code to do this looks like this:

include magic from lib/ansible/module_common.py
#<<INCLUDE_ANSIBLE_MODULE_COMMON>>
main()
So, finally, we have the code for our module built. Putting it all
together, it should look like the following code:
#!/usr/bin/python #1
-*- coding: utf-8 -*- #2

import os #3

def main(): #4
 module = AnsibleModule(#5
 argument_spec = dict(#6
 runlevel=dict(default=None, type='str'), #7
), #8

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[87]

) #9

 # Ansible helps us run commands #10
 rc, out, err = module.run_command('/sbin/runlevel') #11
 if rc != 0: #12
 module.fail_json(msg="Could not determine current runlevel.",
 rc=rc, err=err) #13

 # Get the runlevel, exit if its not what we expect #14
 last_runlevel, cur_runlevel = out.split(' ', 1) #15
 cur_runlevel = cur_runlevel.rstrip() #16
 if len(cur_runlevel) > 1: #17
 module.fail_json(msg="Got unexpected output from runlevel.",
 rc=rc) #18

 # Do we need to change anything #19
 if (module.params['runlevel'] is None or
 module.params['runlevel'] == cur_runlevel): #20
 module.exit_json(changed=False, runlevel=cur_runlevel) #21

 # Check if we are root #22
 uid = os.geteuid() #23
 if uid != 0: #24
 module.fail_json(msg="You need to be root to change the
 runlevel") #25

 # Attempt to change the runlevel #26
 rc, out, err = module.run_command('/sbin/init %s' %
 module.params['runlevel']) #27
 if rc != 0: #28
 module.fail_json(msg="Could not change runlevel.", rc=rc,
 err=err) #29

 # Tell ansible the results #30
 module.exit_json(changed=True, runlevel=cur_runlevel) #31

include magic from lib/ansible/module_common.py #32
#<<INCLUDE_ANSIBLE_MODULE_COMMON>> #33
main() #34

www.it-ebooks.info

http://www.it-ebooks.info/

Custom Modules

[88]

You can test this module the same way you tested the Bash module with the
test-module script. However, you need to be careful, because if you run it with
sudo, you might reboot your machine or alter the init level to something you don't
want. This module is probably better tested by using Ansible itself on a remote test
machine. We follow the same process as described in the Writing a module in Bash
section earlier in this chapter. We create a playbook that uses the module, and then
place the module in a library directory that has been made in the same directory as
the playbook. Here is the playbook we need to use:

- name: Test the new init module
 hosts: testmachine
 user: root
 tasks:
 - name: Set the init level to 5
 init: runlevel=5

Now you should be able to try and run this on a remote machine. The first time you
run it, if the machine is not already in run level 5, you should see it change the run
level. Then you should be able to run it for a second time to see that nothing has
changed. You might also want to check to make sure the module fails correctly when
not run as root.

External inventories
In Chapter 1, Getting Started with Ansible, we saw how Ansible needs an inventory
file, so that it knows where its hosts are and how to access them. Ansible also allows
you to specify a script that allows you to fetch the inventory from another source.
External inventory scripts can be written in any language that you like as long as
they output valid JSON.

An external inventory script has to accept two different calls from Ansible. If called
with –list, it must return a list of all the available groups and hosts. Additionally,
it may be called with --host. In this case, the second argument will be a hostname
and the script is expected to return a list of variables for that host. All the outputs are
expected in JSON, so you should use a language that supports it naturally.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[89]

Let's write a module that takes a CSV file listing all your machines and presents this to
Ansible as an inventory. This will be handy if you have a Configuration Management
Database (CMDB) that allows you to export your machine list as CSV, or for someone
who keeps records of their machines in a spreadsheet. Additionally, it doesn't require
any dependencies outside Python, as a CSV processing module is already included
with Python. This really just parses the CSV file into the right data structures and
prints them out as JSON data structures. The following is an example CSV file we
wish to process; you may wish to customize it for the machines in your environment:

Group,Host,Variables
test,example,ansible_ssh_user=root
test,localhost,connection=local

This file needs to be converted into two different JSON outputs. When --list is
called, we need to output the whole thing in a form that looks like this:

{"test": ["example", "localhost"]}

And when it is called with the arguments --host example, it should return this:

{"ansible_ssh_user": "root"}

Here is the script that opens a file named machines.csv and produces the dictionary
of the groups if --list is given: Additionally, when --host and a hostname are
given, it parses that host's variables and returns them as a dictionary. The script is
well-commented, so you can see what it is doing. You can run the script manually
with the --list and --host arguments to confirm that it behaves correctly.

#!/usr/bin/env python
-*- coding: utf-8 -*-

import sys
import csv
import json

def getlist(csvfile):
 # Init local variables
 glist = dict()
 rowcount = 0

 # Iterate over all the rows
 for row in csvfile:
 # Throw away the header (Row 0)
 if rowcount != 0:
 # Get the values out of the row
 (group, host, variables) = row

www.it-ebooks.info

http://www.it-ebooks.info/

Custom Modules

[90]

 # If this is the first time we've
 # read this group create an empty
 # list for it
 if group not in glist:
 glist[group] = list()

 # Add the host to the list
 glist[group].append(host)

 # Count the rows we've processed
 rowcount += 1

 return glist

def gethost(csvfile, host):
 # Init local variables
 rowcount = 0

 # Iterate over all the rows
 for row in csvfile:
 # Throw away the header (Row 0)
 if rowcount != 0 and row[1] == host:
 # Get the values out of the row
 variables = dict()
 for kvpair in row[2].split():
 key, value = kvpair.split('=', 1)
 variables[key] = value

 return variables

 # Count the rows we've processed
 rowcount += 1

command = sys.argv[1]

#Open the CSV and start parsing it
with open('machines.csv', 'r') as infile:
 result = dict()
 csvfile = csv.reader(infile)

 if command == '--list':
 result = getlist(csvfile)
 elif command == '--host':
 result = gethost(csvfile, sys.argv[2])

 print json.dumps(result)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[91]

You can now use this inventory script to provide the inventory when using Ansible.
A quick way to test that everything is working correctly is to use the ping module to
test the connection to all the machines. This command will not test whether the hosts
are in the right groups; if you want to do that, you can use the same ping module
command but instead of running it across all, you can simply use the group you
would like to test. If your inventory file is executable, then Ansible will run it and
use the output. You can also use a directory and Ansible will include all files inside,
running them if they are executable.

$ ansible -i csvinventory –list-hosts -m ping all

Similar to when you used the ping module in Chapter 1, Getting Started with Ansible,
you should see an output that looks like the following:

localhost | success >> {
 "changed": false,
 "ping": "pong"
}

example | success >> {
 "changed": false,
 "ping": "pong"
}

This indicates that you can connect and use Ansible on all the hosts from your
inventory. You can use the same -i argument with ansible-playbook to run your
playbooks with the same inventory.

Extending Ansible
Apart from writing modules and external inventory script, you can also extend
the core functionality of Ansible itself. This allows you to include even more
functionality into Ansible using Python. By writing plugins for Ansible, you can
do the following:

•	 Add new methods for controlling other machines with connection plugins
•	 Use data from external sources outside Ansible in loops or lookups with

lookup plugins
•	 Add new filters for use with variables or in templates with filter plugins
•	 Include callbacks that run when certain actions happen inside Ansible with

callback plugins

www.it-ebooks.info

http://www.it-ebooks.info/

Custom Modules

[92]

To add extra plugins to your Ansible projects, we create a Python file in the plugin
directories specified in your ansible.cfg file. Alternatively, we can add new
directories containing our plugins to the list of directories already present.

Do not remove any of the existing directories, as you will be
removing plugins that provide core Ansible features such as
the ones we have mentioned earlier in this book.

When writing plugins to Ansible, you should focus on making them flexible and
reusable where possible. This way you end up removing some complexity from
your playbooks and templates into a few complex Python files. Focusing on re-
usability of your plugins also means it is possible to submit them back to the Ansible
project using a GitHub pull request. If you submit your plugins back to Ansible,
then everybody will be able to take advantage of your plugin, and you would have
played a part in the development of Ansible itself. More information on contributing
to Ansible can be found in the CONTRIBUTORS.md file in the Ansible source code.

Connection plugins
Connection plugins are responsible for relaying files to and from the remote
machine, and executing modules. You will no doubt have already used the SSH,
local and possibly the winrm plugins with the playbooks used earlier in the book.

Apart from the normal __init__() method, connection plugins must implement the
following methods:

Method Purpose
connect() This opens the connection to the host we are managing
exec_command() This executes a command on the managed host
put_file() This copies a file to the managed host
fetch_file() This downloads a file from the managed host
close() This closes the connection to the host we are managing

Lookup plugins
Lookup plugins are used in two ways: to include data from outside as a lookup(),
or in the with_ style to loop over items. You can even combine the two to loop over
external data as is done in the with_fileglob lookup plugin. Several lookup plugins
have been demonstrated earlier in the book, particularly in Looping section of Chapter
3, Advanced Playbook.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[93]

Lookup plugins are simple to write, and apart from the normal __init__() method,
they only need you to implement a run() method. This method uses the listify_
lookup_plugin_terms() method from the Ansible utils package to gather the
arguments list passed to it, and returns the result. As an example, we will now
demonstrate a lookup plugin to read data from a JSON encoded file:

import json

class LookupModule(object):
 def __init__(self, basedir=None, **kwargs):
 pass

 def run(self, terms, inject=None, **kwargs):
 with open(terms, 'r') as f:
 json_obj = json.load(f)

 return json_obj

This can be used either as a lookup plugin to fetch complex data or, if the file
contains a JSON list, as a loop using with_jsonfile. Save the preceding example
as jsonfile.py in one of your lookup plugin directories. You can see that we have
declared a new class named LookupModule; this is what Ansible tries to find within
your Python file, so you must use this name. We then create a constructor (named
__init__) so that Ansible can create our class. Finally, we make a small method that
simply opens a JSON file, parses it and returns the result to Ansible.

We should note that this example is really simplified and only looks in the current
working directory for the file. It could be extended later to look in a roles file
directory or elsewhere in order to better conform to conventions set by other
Ansible modules.

You can then use this lookup plugin in a playbook like this:

- name: Print the JSON data we received
 debug:
 msg: "{{ lookup('json', 'file.json') }}"

Filter plugins
Filter plugins are extensions to the Jinja2 template engine that Ansible uses to
process variables and generate files from templates. These extensions can be
used in playbooks to perform data processing on variables, or they can be used
inside templates to process data before it is included in the file. They simplify the
processing of data by moving the complexity to a Python file and away from the
templates or Ansible configuration.

www.it-ebooks.info

http://www.it-ebooks.info/

Custom Modules

[94]

Filter plugins are a little different from other plugins. To implement one, you first
write a simple function that simply takes the input you need and returns the result.
Second, you create a class named FilterModule, and implement a filters method
on it, which returns a Python dictionary, where the keys are the filter names and the
values the functions to call.

Here is a sample implementation of a plugin that can be used to calculate the
minimum number of servers required in any group to avoid a split-brain situation:
This number in most systems is one greater than 50% of the nodes available.

def quorum(list_of_machines):

 n = len(list_of_machines)
 quorum = n / 2 + 1

 return quorum

class FilterModule(object):
 def filters(self):
 return {
 'quorum': quorum,
 }

Simply put, this module counts how many items were in the list passed to it, divides
it by two, and then adds one. It is all done as integer math, so remainders are ignored
and everything is done as whole numbers, which suits our purpose.

This filter can then be used in a playbook or a template. For example, if we wanted to
configure an Elasticsearch cluster to have a quorum and avoid split-brain issues, we
will use the following line of code:

discovery.zen.minimum_master_nodes: {{ play_hosts|quorum }}

This will get the list of hosts this play is being run on (from the play_hosts
variable), and then calculate how many of those are required to obtain a quorum.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[95]

Callback plugins
Callback plugins are used to provide information about actions that are happening
in Ansible to external systems. They are automatically activated if they are found
in the directories specified under the callback_plugins directory into Ansible
configuration. They are often useful when playbooks are being run as automated
tasks as they can give feedback via other channels than the standard output. Callback
plugins have a wide variety of uses, as follows:

•	 Sending an e-mail at the end of a playbook with the statistics of what changed
•	 Recording a running log of changes being made to syslog
•	 Notifying a chat channel when a playbook task fails
•	 Updating a CMDB as changes are made to ensure an accurate view of the

configuration of every system
•	 Alerting an admin when a play has exited early because all hosts have failed

The callback plugins are the most complicated plugins to write because they have the
ability to hook into most of Ansible's features. Just because there are many options
though does not mean you need to implement them all. You only need to implement
the ones your callback will use. Here is a list of the methods you can implement,
along with their description:

•	 def on_any(self, *args, **kwargs): This is called before any of the
other callbacks are called. Because the arguments differ from callback to
callback, it expands its arguments into args and kwargs. This method is
good for logging. Using it for anything else can become quite complicated.

•	 runner_on_failed(self, host, res, ignore_errors=False): This is
run after a task fails. The host argument contains the host on which the task
was running, res contains the task data from the playbook and anything
that was returned, and ignore_errors contains a boolean value specifying
whether the playbook indicated errors should be ignored.

•	 runner_on_ok(self, host, res): This runs after a task succeeds or
when a poll for an async job succeeds. The argument host contains the host
on which the task was running and res contains the task data from the
playbook and any data that was returned.

•	 runner_on_skipped(self, host, item=None): This runs after a task is
skipped. The argument host contains the host on which the task would have
run if it were not skipped and the item argument contains the loop item,
which is currently being iterated over.

www.it-ebooks.info

http://www.it-ebooks.info/

Custom Modules

[96]

•	 runner_on_unreachable(self, host, res):This runs when a host is
found to be unreachable. The host argument contains the unreachable host
and res contains the error message from the connection plugin.

•	 runner_on_no_hosts(self): This callback runs when a task is started
without any hosts. It does not have any variables.

•	 runner_on_async_poll(self, host, res, jid, clock): This runs
whenever an async job is polled for status. The variable host contains the
host that is being polled, res contains details of the polling, jid contains the
job ID, and clock contains the amount of time remaining before the job fails.

•	 runner_on_async_ok(self, host, res, jid): This runs when polling has
completed without an error. The argument host contains the host that was
being polled, res holds the results from the task, and jid contains the job ID.

•	 runner_on_async_failed(self, host, res, jid): This runs when
polling has completed with an error. The argument host contains the host
that was being polled, res holds the results from the task, and jid contains
the job ID.

•	 playbook_on_start(self): This callback is executed when a playbook is
started with ansible-playbook. It does not use any variables.

•	 playbook_on_notify(self, host, handler): This callback is run
whenever a handler is notified. Because this is run when the notify happens
and not when the handler runs, it may run multiple times for each handler.
It has two variables: host stores the hostname on which the task notified and
handler stores the name of the handler that was notified.

•	 playbook_on_no_hosts_matched(self): This callback runs if a play starts
that does not match any host. It does not have any variables.

•	 playbook_on_no_hosts_remaining(self): This callback runs when all the
hosts in a play have errors and the play is unable to continue.

•	 playbook_on_task_start(self, name, is_conditional): This callback
runs right before each task, even if the task is going to be skipped. The name
variable is set to the name of the task, and is_conditional is set to the
outcome of the when clause—True if the task will run, and False if not.

•	 playbook_on_setup(self): This callback is executed right before the setup
module executes across the hosts. It runs once no matter how many hosts are
included. It does not include any variables.

•	 playbook_on_play_start(self, name): This callback runs at the beginning
of each play. The name variable contains the name of the play that is starting.

•	 playbook_on_stats(self, stats): This callback runs at the end of a
playbook right before the stats are to be printed. The stats variable contains
the details of the playbook.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[97]

Summary
Having read this chapter, you should now be able to build modules using either
Bash or any other languages that you know. You should be able to install modules
that you have either obtained from the Internet, or written yourself. We also
covered how to write modules more efficiently using the boilerplate code in Python,
and we wrote an inventory script that allows you to pull your inventory from an
external source. Finally we covered adding new features to Ansible itself by writing
connection, lookup, filter, and callback plugins.

We have tried to cover most of the things you will need when getting to know
Ansible, but we can't possibly cover everything. If you would like to continue
learning about Ansible, you can visit the official Ansible documentation at
http://docs.ansible.com/.

The Ansible project is currently working on a rewrite, which will eventually be
released as version 2.0. This book should stay compatible with this version and
others going forward, but there will be new features that are not covered here. In
version 2.0 of Ansible, you can expect the following features, which may change in
the future (as it has not yet been released):

•	 The ability to recover from failures within a playbook
•	 Allowing you to run lots of tasks in parallel
•	 Compatibility with Python 3
•	 Easier debugging as errors will contain line numbers

www.it-ebooks.info

http://docs.ansible.com/
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[99]

Index
A
add_host module 33
Ansible

about 1
directories 68
documentation, URL 97
hardware, requisites 1, 2
installing 2
installing, from distribution 3
installing, from pip 3
installing, from source code 4
modules 10
pull mode 74
push mode 75, 76
roles, managing 66-68
setting up 4-6
setting up, on Windows 7-9
software, requisites 1, 2
tags 71-74

ansible-doc command 15
Ansible, extending

about 91, 92
callback plugins 95, 96
connection plugins 92
filter plugins 93
lookup plugins 92

Ansible playbooks. See playbooks
assemble module 32, 33
AWS modules 37, 38

B
Bash

modules, writing 80-83

C
callback plugins 95, 96
check mode 58, 59
Cloud Infrastructure modules

AWS modules 37, 38
command module 14
Configuration Management

Database (CMDB) 89
connection plugins

about 92
close() method 92
connect() method 92
exec_command() method 92
fetch_file() method 92
put_file() method 92

controller machine 1
copy module 13

D
data

processing 56, 57
debug module 57
directories

default folder 68
files folder 68
handlers folder 68
meta folder 68
tasks folder 68
templates directory 68
vars folder 68

distribution
Ansible, installing 3

www.it-ebooks.info

http://www.it-ebooks.info/

[100]

E
environment variables 52, 53
EPEL

URL 3
external inventory script 88-91

F
file module 12
files

with variables, searching 51, 52
filter plugins 93

G
group_by module 34, 35
group_names variable 47, 49, 50
groups variable 48, 49

H
handler includes 62-65
handlers section 22-24
hostvars variable 47, 48

I
includes

about 61
handler includes 62
playbook includes 61
task includes 62
variable includes 61

installation, Ansible
from distribution 3
from pip 3
from source code 4

inventory_dir variable 51
inventory_file variable 51
inventory_hostname_short variable 51
inventory_hostname variable 50
ISC DHCP (Dynamic Host Configuration

Protocol) server 23

J
jq

URL 80

jsawk
URL 80

L
lookup plugins 43, 53, 54, 92
looping 43, 44

M
modules

about 10
ansible-doc command 15
command module 14
conditional execution 44, 45
copy module 13
custom module, using 83, 84
exit_json 85
fail_json 85
file module 12
ping module 10
run_command 85
setup module 10-12
shell module 15
writing, in Bash 80-83
writing, in Python 84-88

O
operations

running, in parallel 41, 42

P
pause module 30, 59
ping module 10
pip

about 2
Ansible, installing 3

playbook 17
playbook includes 61, 65, 66
playbook modules

about 25
add_host module 33
assemble module 32, 33
group_by module 34, 35
pause module 30
set_fact module 28-30

www.it-ebooks.info

http://www.it-ebooks.info/

[101]

slurp module 35, 36
template module 25-28
wait_for module 31

playbooks
about 18
target section 18
task section 18
variable section 18

playbooks, debugging
about 57
check mode 58, 59
debug module 57, 58
pause module 59
verbose mode 58

provisioning 70
pull mode 74, 75
push mode 75, 76
Python

modules, writing 84-88

R
results

storing 55
roles

about 66
defaults 70
managing, in Ansible 66-68
metadata 69
setting up 66

S
secrets

storing 76, 77
set_fact module 28-30
setup module

about 10-12
ansible_architecture field 11
ansible_distribution field 11
ansible_distribution_version field 11
ansible_domain field 11
ansible_fqdn field 11
ansible_interfaces field 11
ansible_kernel field 11
ansible_memtotal_mb field 11
ansible_processor_count field 11

ansible_virtualization_role field 12
ansible_virtualization_type field 12

shell module 15
slurp module 35
source code

Ansible, installing 4

T
tags 71-74
target section

about 18, 19
connection 19
gather_facts 19
sudo 19
sudo_user 19
user 19

task
delegating 46, 47

task includes 62, 63
task section 21, 22
template module 25-28

U
Ubuntu PPA

URL, for setting up 3

V
variable includes 61
variable section 19, 20
verbose mode 58

W
wait_for module 31
Windows

Ansible, setting up 7-9
Windows playbook modules 36

Y
YAML

about 17
URL 17

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Thank you for buying
Ansible Configuration Management

Second Edition

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.it-ebooks.info

www.packtpub.com
http://www.it-ebooks.info/

Microsoft System Center
2012 Configuration Manager:
Administration Cookbook
ISBN: 978-1-84968-494-1 Paperback: 224 pages

Over 50 practical recipes to administer System Center
2012 Configuration Manager

1.	 Administer System Center 2012 Configuration
Manager.

2.	 Provides fast answers to questions commonly
asked by new administrators.

3.	 Skip the why's and go straight to the how-to's.

4.	 Gain administration tips from System Center
2012 Configuration Manager MVPs with years
of experience in large corporations.

Visual SourceSafe 2005 Software
Configuration Management in
Practice
ISBN: 978-1-90481-169-5 Paperback: 404 pages

Best practice management and development of Visual
Studio .NET 2005 applications with this easy-to-use
SCM tool from Microsoft

1.	 SCM fundamentals and strategies
clearly explained.

2.	 Real-world SOA example: a hotel
reservation system.

3.	 SourceSafe best practices across the
complete lifecycle.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

JBoss AS 7 Configuration,
Deployment, and Administration
ISBN: 978-1-84951-678-5 Paperback: 380 pages

Build a fully-functional, efficient application server
using JBoss AS

1.	 Covers all JBoss AS 7 administration topics
in a concise, practical, and understandable
manner, along with detailed explanations
and lots of screenshots.

2.	 Uncover the advanced features of JBoss AS,
including High Availability and clustering,
integration with other frameworks, and
creating complex AS domain configurations.

3.	 Discover the new features of JBoss AS 7,
which has made quite a departure from
previous versions.

Puppet 3 Cookbook
ISBN: 978-1-78216-976-5 Paperback: 274 pages

Build reliable, scalable, secure, and high-performance
systems to fully utilize the power of cloud computing

1.	 Use Puppet 3 to take control of your
servers and desktops, with detailed
step-by-step instructions.

2.	 Covers all the popular tools and frameworks
used with Puppet: Dashboard, Foreman,
and more.

3.	 Teaches you how to extend Puppet with
custom functions, types, and providers.

4.	 Packed with tips and inspiring ideas for
using Puppet to automate server builds,
deployments, and workflows.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started with Ansible
	Hardware and software required
	Installation methods
	Installing from your distribution
	Installing from pip
	Installing from the source code

	Setting up Ansible
	Setting up on Windows

	First steps with Ansible
	Module help
	Summary

	Chapter 2: Simple Playbooks
	The target section
	The variable section
	The task section
	The handlers section
	The playbook modules
	The template module
	The set_fact module
	The pause module
	The wait_for module
	The assemble module
	The add_host module
	The group_by module
	The slurp module

	Windows playbook modules
	Cloud Infrastructure modules
	The AWS modules

	Summary

	Chapter 3: Advanced Playbooks
	Running operations in parallel
	Looping
	Conditional execution
	Task delegation
	Extra variables
	The hostvars variable
	The groups variable
	The group_names variable
	The inventory_hostname variable
	The inventory_hostname_short variable
	The inventory_dir variable
	The inventory_file variable

	Finding files with variables
	Environment variables
	External data lookups
	Storing results
	Processing data
	Debugging playbooks
	The debug module
	The verbose mode
	The check mode
	The pause module

	Summary

	Chapter 4: Larger Projects
	Includes
	Task includes
	Handler includes
	Playbook includes

	Roles
	Role metadata
	Role defaults
	Speeding things up
	Provisioning
	Tags
	Ansible's pull mode

	Storing secrets
	Summary

	Chapter 5: Custom Modules
	Writing a module in Bash
	Using a custom module
	Writing modules in Python
	External inventories
	Extending Ansible
	Connection plugins
	Lookup plugins
	Filter plugins
	Callback plugins

	Summary

	Index

